全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A strategy for achieving low percolation and high electrical conductivity in melt-blended polycarbonate (PC)/multiwall carbon nanotube (MWCNT) nanocomposites: Electrical and thermo-mechanical properties

DOI: 10.3144/expresspolymlett.2013.47

Keywords: Nanocomposites , Electrical Conductivity , Thermal Properties , PC

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work, polycarbonate (PC)/multiwall carbon nanotube (MWCNT) nanocomposites were prepared by simple melt mixing at a temperature (~350°C) well above the processing temperature of PC, followed by compression molding, that exhibited percolation threshold as low as of 0.11 wt% and high electrical conductivity of 1.38x10–3 S cm–1 at only 0.5 wt% MWCNT loading. Due to the lower interfacial energy between MWCNT and PC, the carbon nanotubes are excellently dispersed and formed continuous conductive network structure throughout the host polymer. AC electrical conductivity and dielectric permittivity of PC/MWCNT nanocomposites were characterized in a broad frequency range, 101–107 Hz. Low percolation threshold (pc) of 0.11 wt% and the critical exponent (t) of ~3.38 was resulted from scaling law equation. The linear plot of logσDC vs. p–1/3 supported the presence of tunneling conduction among MWCNTs. The thermal property and storage modulus of PC were increased with the incorporation of little amount of MWCNTs. Transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM) confirmed the homogeneous dispersion and distribution of MWCNTs throughout the matrix phase.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133