全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Data Dependant Learners Ensemble Pruning

DOI: 10.4304/jsw.7.4.919-926

Keywords: ensemble learning , generalization ability , data dependant kernel , kernel mapping , point cloud kernel

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ensemble learning aims at combining several slightly different learners to construct stronger learner. Ensemble of a well selected subset of learners would outperform than ensemble of all. However, the well studied accuracy / diversity ensemble pruning framework would lead to over fit of training data, which results a target learner of relatively low generalization ability. We propose to ensemble with base learners trained by both labeled and unlabeled data, by adopting data dependant kernel mapping, which has been proved successful in semi-supervised learning, to get more generalized base learners. We bootstrap both training data and unlabeled data, namely point cloud, to build slight different data set, then construct data dependant kernel. With such kernels data point can be mapped to different feature space which results effective ensemble. We also proof that ensemble of learners trained by both labeled and unlabeled data is of better generalization ability in the meaning of graph Laplacian. Experiments on UCI data repository show the effectiveness of the proposed method.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133