|
Stem Cell Therapy for Congestive Heart FailureAbstract: IntroductionHeart failure is a major cardiovascular health problem. Coronary artery disease is the leading cause of congestive heart failure (CHF) [1]. Cardiac transplantation remains the most effective long-term treatment option, however is limited primarily by donor availability, rejection and infections. Mechanical circulatory support has its own indications and limitations [2]. Therefore, there is a need to develop more effective therapeutic strategies.Recently, regenerative medicine has received considerable scientific attention in the cardiovascular arena. We report here our experience demonstrating the beneficial effects of cardiac stem cell therapy on left ventricular functions in a patient with Hodgkin’s lymphoma (HL) who developed CHF due to ischemic heart disease during the course of lymphoma treatment. Case reportA 58-year-old male with relapsed HL was referred to our bone marrow transplantation unit in October 2009. He was given 8 courses of combination chemotherapy with doxorubicin, bleomycin, vincristine, and dacarbazine (ABVD) between June 2008 and February 2009 and achieved complete remission. However, his disease relapsed 3 months after completing the last cycle of ABVD and he was decided to be treated with DHAP (cisplatin, cytarabine, dexamethasone) followed autologous stem cell transplantation (SCT). After the completion of first course of DHAP regimen, he developed acute myocardial infarction (AMI) and coronary artery bypass grafting (CABG) was performed. After his cardiac function stabilized, 3 additional courses of DHAP were given and he was referred to our centre for consideration of autologous SCT. Computed tomography scans obtained after chemotherapy confirmed complete remission. Stem cells were collected from peripheral blood after mobilization with 10 μg/kg/day granulocyte colony-stimulating factor (G-CSF) subcutaneously. Collection was started on the fifth day of G-CSF and performed for 3 consecutive days. Flow cytometric analysis of CD 34 was used to identify hematopoietic stem cells. During the last evaluation before stem cell transplantation, conventional echocardiogram (ECHO) revealed left ventricular systolic dysfunction with an ejection fraction of ALEF: 44%, MODEF: 45%, MUGA scan showed a decreased left ventricular ejection fraction (LVEF: 43%) (Figure 1). In view of these findings, the patient was found ineligible for SCT and he was offered to give his peripheral blood stem cells for the treatment of heart failure. After receiving the patient’s signed informed consent form, a total number of 3.49x106/kg CD 34+ cells w
|