All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Relative Articles


HDclassif : An R Package for Model-Based Clustering and Discriminant Analysis of High-Dimensional Data

Keywords: model-based classication , high-dimensional data , discriminant analysis , clustering , Gaussian mixture models , parsimonious models , class-specic subspaces , R package

Full-Text   Cite this paper   Add to My Lib


This paper presents the R package HDclassif which is devoted to the clustering and the discriminant analysis of high-dimensional data. The classification methods proposed in the package result from a new parametrization of the Gaussian mixture model which combines the idea of dimension reduction and model constraints on the covariance matrices. The supervised classification method using this parametrization is called high dimensional discriminant analysis (HDDA). In a similar manner, the associated clustering method iscalled high dimensional data clustering (HDDC) and uses the expectation-maximization algorithm for inference. In order to correctly t the data, both methods estimate the specific subspace and the intrinsic dimension of the groups. Due to the constraints on the covariance matrices, the number of parameters to estimate is significantly lower than other model-based methods and this allows the methods to be stable and efficient in high dimensions. Two introductory examples illustrated with R codes allow the user to discover the hdda and hddc functions. Experiments on simulated and real datasets also compare HDDC and HDDA with existing classification methods on high-dimensional datasets. HDclassif is a free software and distributed under the general public license, as part of the R software project.


comments powered by Disqus

Contact Us


WhatsApp +8615387084133

WeChat 1538708413