|
用C++面向对象技术实现复杂生物网络集存储
|
Abstract:
高通量生物技术的发展涌现出了海量的生物网络数据。如何有效的从复杂的生物网络集中挖掘出保守的频繁模式是当代系统生物学研究的热点问题之一。由于生物数据规模大、维数高等的原因,开发出从复杂生物网络集中挖掘出保守频繁模式的应用软件往往面临着一个存储表示的难题。本文用C++面向对象的相关技术,研究了生物网络集的存储表示,并在文中最后讨论了该方法在频繁模式挖掘中的应用。
The development of high-throughput biotechnology emerged in a mass of biological network data. How to dig out the conservative frequent pattern effectively from complex biological networks is one of the hot issues in contemporary systems biology. For the reasons that the biology data tends to have the features of large sacle and high demension, to develop a software that can mine the frequent patterns from these biological networks is apt to face a storage prolem. Therefore, we use the method of C++ object-oriented to tackle this problem and discuss its application of frequent pattern mining from biological networks in the end of our paper.
[1] | L. H. Hartwell, et al. From molecular to modular cell biology. Nature, 1999, 402(2): C47-C52. |
[2] | L. Hood, et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science, 2001, 292 (5518): 929-934. |
[3] | E. Ravasz, et al. Hierarchical organization of modularity in metabolic networks. Science, 2002, 297(5586): 1551-1555. |
[4] | A. W. Rives, T. Galitski. Modular organization of cellular networks. Proceeding of the National Academy Science, 2003, 100(3): 1128- 1133. |
[5] | H. Hu, X. Yan, et al. Mining coherent dense subgraphs across massive biological networks for functional discovery. BMC Bioinformatics, 2005, 21(1): 213-221. |
[6] | X. Yan, M. Mehan, Y. Huang, et al. A Graph based approach to systematically reconstruct human transcriptional regulatory modules. Bioinformatics, 2007, 23(13): i577-i586. |
[7] | 谭浩强. C程序设计教程[M]. 北京: 清华大学出版社, 2005: 305-308. |