全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Personalized Medicine in Ophthalmology: From Pharmacogenetic Biomarkers to Therapeutic and Dosage Optimization

DOI: 10.3390/jpm3010040

Keywords: personalized medicine, pharmacogenetics, clinical utility, ophthalmology, VEGF, age-related macular degeneration, glaucoma, retinopathy, drug delivery, nanotechnology

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rapid progress in genomics and nanotechnology continue to advance our approach to patient care, from diagnosis and prognosis, to targeting and personalization of therapeutics. However, the clinical application of molecular diagnostics in ophthalmology has been limited even though there have been demonstrations of disease risk and pharmacogenetic associations. There is a high clinical need for therapeutic personalization and dosage optimization in ophthalmology and may be the focus of individualized medicine in this specialty. In several retinal conditions, such as age-related macular degeneration, diabetic macular edema, retinal vein occlusion and pre-threshold retinopathy of prematurity, anti-vascular endothelial growth factor therapeutics have resulted in enhanced outcomes. In glaucoma, recent advances in cytoskeletal agents and prostaglandin molecules that affect outflow and remodel the trabecular meshwork have demonstrated improved intraocular pressure control. Application of recent developments in nanoemulsion and polymeric micelle for targeted delivery and drug release are models of dosage optimization, increasing efficacy and improving outcomes in these major eye diseases.

References

[1]  Klein, R.J.; Zeiss, C.; Chew, E.Y.; Tsai, J.Y.; Sackler, R.S.; Haynes, C.; Henning, A.K.; SanGiovanni, J.P.; Mane, S.M.; Mayne, S.T.; et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005, 308, 385–389.
[2]  Hindorff, L.A.; MacArthur, J.; Morales, J.; Junkins, H.A.; Hall, P.N.; Klemm, A.K.; Manolio, T.A. A catalog of published genome-wide association studies. Available online: http://www.genome.gov/gwastudies (accessed on 1 September 2012).
[3]  Hindorff, L.A.; Sethupathy, P.; Junkins, H.A.; Ramos, E.M.; Mehta, J.P.; Collins, F.S.; Manolio, T.A. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 2009, 106, 9362–9367.
[4]  Ong, F.S.; Das, K.; Wang, J.; Vakil, H.; Kuo, J.Z.; Blackwell, W.L.; Lim, S.W.; Goodarzi, M.O.; Bernstein, K.E.; Rotter, J.I.; et al. Personalized medicine and pharmacogenetic biomarkers: Progress in molecular oncology testing. Expert Rev. Mol. Diagn. 2012, 12, 593–602, doi:10.1586/erm.12.59.
[5]  Ong, F.S.; Deignan, J.L.; Kuo, J.Z.; Bernstein, K.E.; Rotter, J.I.; Grody, W.W.; Das, K. Clinical utility of pharmacogenetic biomarkers in cardiovascular therapeutics: A challenge for clinical implementation. Pharmacogenomics 2012, 13, 465–475, doi:10.2217/pgs.12.2.
[6]  Lim, L.S.; Mitchell, P.; Seddon, J.M.; Holz, F.G.; Wong, T.Y. Age-related macular degeneration. Lancet 2012, 379, 1728–1738, doi:10.1016/S0140-6736(12)60282-7.
[7]  Browning, D.J.; Kaiser, P.K.; Rosenfeld, P.J.; Stewart, M.W. Aflibercept for age-related macular degeneration: A game-changer or quiet addition? Am. J. Ophthalmol. 2012, 154, 222–226, doi:10.1016/j.ajo.2012.04.020.
[8]  Truong, A.; Wong, T.Y.; Khachigian, L.M. Emerging therapeutic approaches in the management of retinal angiogenesis and edema. J. Mol. Med. (Berl) 2011, 89, 343–361, doi:10.1007/s00109-010-0709-z.
[9]  Cheung, N.; Mitchell, P.; Wong, T.Y. Diabetic retinopathy. Lancet 2010, 376, 124–136, doi:10.1016/S0140-6736(09)62124-3.
[10]  Wong, T.Y.; Scott, I.U. Clinical practice. Retinal-vein occlusion. N. Engl. J. Med. 2010, 363, 2135–2144, doi:10.1056/NEJMcp1003934.
[11]  Baird, P.N.; Hageman, G.S.; Guymer, R.H. New era for personalized medicine: The diagnosis and management of age-related macular degeneration. Clin. Exp. Ophthalmol. 2009, 37, 814–821, doi:10.1111/j.1442-9071.2009.02136.x.
[12]  Shastry, B.S. Genetic diversity and medicinal drug response in eye care. Graefes Arch. Clin. Exp. Ophthalmol. 2010, 248, 1057–1061, doi:10.1007/s00417-010-1333-x.
[13]  Lee, A.Y.; Raya, A.K.; Kymes, S.M.; Shiels, A.; Brantley, M.A., Jr. Pharmacogenetics of complement factor H (Y402H) and treatment of exudative age-related macular degeneration with ranibizumab. Br. J. Ophthalmol. 2009, 93, 610–613, doi:10.1136/bjo.2008.150995.
[14]  Seitsonen, S.; Jarvela, I.; Meri, S.; Tommila, P.; Ranta, P.; Immonen, I. Complement factor H Y402H polymorphism and characteristics of exudative age-related macular degeneration lesions. Acta Ophthalmol. 2008, 86, 390–394, doi:10.1111/j.1600-0420.2007.01050.x.
[15]  Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004, 350, 2335–2342, doi:10.1056/NEJMoa032691.
[16]  Bashshur, Z.F.; Haddad, Z.A.; Schakal, A.R.; Jaafar, R.F.; Saad, A.; Noureddin, B.N. Intravitreal bevacizumab for treatment of neovascular age-related macular degeneration: The second year of a prospective study. Am. J. Ophthalmol. 2009, 148, 59–65, doi:10.1016/j.ajo.2009.02.006.
[17]  Spaide, R.F.; Laud, K.; Fine, H.F.; Klancnik, J.M., Jr.; Meyerle, C.B.; Yannuzzi, L.A.; Sorenson, J.; Slakter, J.; Fisher, Y.L.; Cooney, M.J. Intravitreal bevacizumab treatment of choroidal neovascularization secondary to age-related macular degeneration. Retina 2006, 26, 383–390, doi:10.1097/00006982-200604000-00001.
[18]  Avery, R.L.; Pearlman, J.; Pieramici, D.J.; Rabena, M.D.; Castellarin, A.A.; Nasir, M.A.; Giust, M.J.; Wendel, R.; Patel, A. Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy. Ophthalmology 2006, 113, 1695–1705, doi:10.1016/j.ophtha.2006.05.064.
[19]  Mason, J.O., 3rd; Nixon, P.A.; White, M.F. Intravitreal injection of bevacizumab (Avastin) as adjunctive treatment of proliferative diabetic retinopathy. Am. J. Ophthalmol. 2006, 142, 685–688, doi:10.1016/j.ajo.2006.04.058.
[20]  Spaide, R.F.; Fisher, Y.L. Intravitreal bevacizumab (Avastin) treatment of proliferative diabetic retinopathy complicated by vitreous hemorrhage. Retina 2006, 26, 275–278, doi:10.1097/00006982-200603000-00004.
[21]  Jonas, J.B.; Libondi, T.; von Baltz, S.; Vossmerbaeumer, U. Intravitreal bevacizumab for vitreous haemorrhage. Acta Ophthalmol. 2008, 86, 585–586, doi:10.1111/j.1600-0420.2007.01107.x.
[22]  Ruiz-Moreno, J.M.; Montero, J.A.; Lugo, F.; Amat, P.; Staicu, C. Intravitreal bevacizumab in recurrent diabetic vitreous haemorrhage after vitrectomy. Acta Ophthalmol. 2008, 86, 231–232, doi:10.1111/j.1600-0420.2007.01021.x.
[23]  Iliev, M.E.; Domig, D.; Wolf-Schnurrbursch, U.; Wolf, S.; Sarra, G.M. Intravitreal bevacizumab (Avastin) in the treatment of neovascular glaucoma. Am. J. Ophthalmol. 2006, 142, 1054–1056, doi:10.1016/j.ajo.2006.06.066.
[24]  Kuo, J.Z.; Ong, F.S.; Yeung, L.; Wu, W.C.; Chen, Y.P.; Wang, N.K.; Lai, C.C. Predictive factors for visual outcome to intravitreal bevacizumab in young chinese patients with myopic choroidal neovascularization. Retina 2011, 31, 1835–1840, doi:10.1097/IAE.0b013e31821ba2dc.
[25]  Jaissle, G.B.; Leitritz, M.; Gelisken, F.; Ziemssen, F.; Bartz-Schmidt, K.U.; Szurman, P. One-Year results after intravitreal bevacizumab therapy for macular edema secondary to branch retinal vein occlusion. Graefes Arch. Clin. Exp. Ophthalmol. 2009, 247, 27–33, doi:10.1007/s00417-008-0916-2.
[26]  Prager, F.; Michels, S.; Kriechbaum, K.; Georgopoulos, M.; Funk, M.; Geitzenauer, W.; Polak, K.; Schmidt-Erfurth, U. Intravitreal bevacizumab (Avastin) for macular oedema secondary to retinal vein occlusion: 12-Month results of a prospective clinical trial. Br. J. Ophthalmol. 2009, 93, 452–456, doi:10.1136/bjo.2008.141085.
[27]  Kriechbaum, K.; Michels, S.; Prager, F.; Georgopoulos, M.; Funk, M.; Geitzenauer, W.; Schmidt-Erfurth, U. Intravitreal Avastin for macular oedema secondary to retinal vein occlusion: A prospective study. Br. J. Ophthalmol. 2008, 92, 518–522, doi:10.1136/bjo.2007.127282.
[28]  Brantley, M.A., Jr.; Fang, A.M.; King, J.M.; Tewari, A.; Kymes, S.M.; Shiels, A. Association of complement factor H and LOC387715 genotypes with response of exudative age-related macular degeneration to intravitreal bevacizumab. Ophthalmology 2007, 114, 2168–2173, doi:10.1016/j.ophtha.2007.09.008.
[29]  Dewan, A.; Liu, M.; Hartman, S.; Zhang, S.S.; Liu, D.T.; Zhao, C.; Tam, P.O.; Chan, W.M.; Lam, D.S.; Snyder, M.; et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 2006, 314, 989–992.
[30]  Nischler, C.; Oberkofler, H.; Ortner, C.; Paikl, D.; Riha, W.; Lang, N.; Patsch, W.; Egger, S.F. Complement factor H Y402H gene polymorphism and response to intravitreal bevacizumab in exudative age-related macular degeneration. Acta Ophthalmol. 2011, 89, e344–e349, doi:10.1111/j.1755-3768.2010.02080.x.
[31]  Teper, S.J.; Nowinska, A.; Pilat, J.; Palucha, A.; Wylegala, E. Involvement of genetic factors in the response to a variable-dosing ranibizumab treatment regimen for age-related macular degeneration. Mol. Vis. 2010, 16, 2598–2604.
[32]  Seitsonen, S.P.; Jarvela, I.E.; Meri, S.; Tommila, P.V.; Ranta, P.H.; Immonen, I.J. The effect of complement factor H Y402H polymorphism on the outcome of photodynamic therapy in age-related macular degeneration. Eur. J. Ophthalmol. 2007, 17, 943–949.
[33]  Feng, X.; Xiao, J.; Longville, B.; Tan, A.X.; Wu, X.N.; Cooper, M.N.; McAllister, I.L.; Isaacs, T.; Palmer, L.J.; Constable, I.J. Complement factor H Y402H and C-reactive protein polymorphism and photodynamic therapy response in age-related macular degeneration. Ophthalmology 2009, 116, 1908–1912.
[34]  Immonen, I.; Seitsonen, S.; Tommila, P.; Kangas-Kontio, T.; Kakko, S.; Savolainen, E.R.; Savolainen, M.J.; Liinamaa, M.J. Vascular endothelial growth factor gene variation and the response to photodynamic therapy in age-related macular degeneration. Ophthalmology 2010, 117, 103–108, doi:10.1016/j.ophtha.2009.06.037.
[35]  Parmeggiani, F.; Gemmati, D.; Costagliola, C.; Sebastiani, A.; Incorvaia, C. Predictive role of C677T MTHFR polymorphism in variable efficacy of photodynamic therapy for neovascular age-related macular degeneration. Pharmacogenomics 2009, 10, 81–95, doi:10.2217/14622416.10.1.81.
[36]  Seddon, J.M.; George, S.; Rosner, B. Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: The US twin study of age-related macular degeneration. Arch. Ophthalmol. 2006, 124, 995–1001, doi:10.1001/archopht.124.7.995.
[37]  Chakravarthy, U.; Wong, T.Y.; Fletcher, A.; Piault, E.; Evans, C.; Zlateva, G.; Buggage, R.; Pleil, A.; Mitchell, P. Clinical risk factors for age-related macular degeneration: A systematic review and meta-analysis. BMC Ophthalmol. 2010, 10, e31, doi:10.1186/1471-2415-10-31.
[38]  Peeters, A.; Magliano, D.J.; Stevens, J.; Duncan, B.B.; Klein, R.; Wong, T.Y. Changes in abdominal obesity and age-related macular degeneration: The atherosclerosis risk in communities study. Arch. Ophthalmol. 2008, 126, 1554–1560, doi:10.1001/archopht.126.11.1554.
[39]  Seddon, J.M.; George, S.; Rosner, B.; Klein, M.L. CFH gene variant, Y402H, and smoking, body mass index, environmental associations with advanced age-related macular degeneration. Hum. Hered. 2006, 61, 157–165, doi:10.1159/000094141.
[40]  Micieli, J.A. Can genetic factors predict response to antivascular endothelial growth factor therapy in age-related macular degeneration? Can. J. Ophthalmol. 2011, 46, 549–551, doi:10.3129/i10-113.
[41]  Quigley, H.A. Number of people with glaucoma worldwide. Br. J. Ophthalmol. 1996, 80, 389–393, doi:10.1136/bjo.80.5.389.
[42]  Szabo, V.; Borgulya, G.; Filkorn, T.; Majnik, J.; Banyasz, I.; Nagy, Z.Z. The variant N363S of glucocorticoid receptor in steroid-induced ocular hypertension in Hungarian patients treated with photorefractive keratectomy. Mol. Vis. 2007, 13, 659–666.
[43]  Gerzenstein, S.M.; Pletcher, M.T.; Cervino, A.C.; Tsinoremas, N.F.; Young, B.; Puliafito, C.A.; Fini, M.E.; Schwartz, S.G. Glucocorticoid receptor polymorphisms and intraocular pressure response to intravitreal triamcinolone acetonide. Ophthalmic Genet. 2008, 29, 166–170, doi:10.1080/13816810802320217.
[44]  McCarty, C.A.; Burmester, J.K.; Mukesh, B.N.; Patchett, R.B.; Wilke, R.A. Intraocular pressure response to topical beta-blockers associated with an ADRB2 single-nucleotide polymorphism. Arch. Ophthalmol. 2008, 126, 959–963, doi:10.1001/archopht.126.7.959.
[45]  Sakurai, M.; Higashide, T.; Takahashi, M.; Sugiyama, K. Association between genetic polymorphisms of the prostaglandin F2alpha receptor gene and response to latanoprost. Ophthalmology 2007, 114, 1039–1045, doi:10.1016/j.ophtha.2007.03.025.
[46]  Yang, Y.; Wu, K.; Yuan, H.; Yu, M. Cytochrome oxidase 2D6 gene polymorphism in primary open-angle glaucoma with various effects to ophthalmic timolol. J. Ocul. Pharmacol. Ther. 2009, 25, 163–171, doi:10.1089/jop.2008.0028.
[47]  Piltz, J.; Gross, R.; Shin, D.H.; Beiser, J.A.; Dorr, D.A.; Kass, M.A.; Gordon, M.O. Contralateral effect of topical beta-adrenergic antagonists in initial one-eyed trials in the ocular hypertension treatment study. Am. J. Ophthalmol. 2000, 130, 441–453, doi:10.1016/S0002-9394(00)00527-4.
[48]  Netland, P.A.; Landry, T.; Sullivan, E.K.; Andrew, R.; Silver, L.; Weiner, A.; Mallick, S.; Dickerson, J.; Bergamini, M.V.; Robertson, S.M.; et al. Travoprost compared with latanoprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am. J. Ophthalmol. 2001, 132, 472–484, doi:10.1016/S0002-9394(01)01177-1.
[49]  Small, K.M.; Wagoner, L.E.; Levin, A.M.; Kardia, S.L.; Liggett, S.B. Synergistic polymorphisms of beta1- and alpha2C-adrenergic receptors and the risk of congestive heart failure. N. Engl. J. Med. 2002, 347, 1135–1142, doi:10.1056/NEJMoa020803.
[50]  Moroi, S.E.; Hao, Y.; Sitaramayya, A. Nitric oxide attenuates alpha(2)-adrenergic receptors by ADP-ribosylation of G(i)alpha in ciliary epithelium. Invest. Ophthalmol. Vis. Sci. 2001, 42, 2056–2062.
[51]  Wong, T.Y.; Liew, G.; Mitchell, P. Clinical update: New treatments for age-related macular degeneration. Lancet 2007, 370, 204–206, doi:10.1016/S0140-6736(07)61104-0.
[52]  Seddon, J.M.; Ajani, U.A.; Sperduto, R.D.; Hiller, R.; Blair, N.; Burton, T.C.; Farber, M.D.; Gragoudas, E.S.; Haller, J.; Miller, D.T.; et al. Eye Disease Case-Control Study Group. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. JAMA 1994, 272, 1413–1420.
[53]  Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report No. 8. Arch. Ophthalmol. 2001, 119, 1417–1436, doi:10.1001/archopht.119.10.1417.
[54]  Chew, E.Y.; Clemons, T.; Sangiovanni, J.P.; Danis, R.; Domalpally, A.; McBee, W.; Sperduto, R.; Ferris, F.L. The Age-Related Eye Disease Study 2 (AREDS2): Study design and baseline characteristics (AREDS2 report number 1). Ophthalmology 2012, 119, 2282–2289, doi:10.1016/j.ophtha.2012.05.027.
[55]  Macular Photocoagulation Study Group. Argon laser photocoagulation for neovascular maculopathy. Three-year results from randomized clinical trials. Arch. Ophthalmol. 1986, 104, 694–701, doi:10.1001/archopht.1986.01050170084028.
[56]  Macular Photocoagulation Study Group. Laser photocoagulation of subfoveal neovascular lesions in age-related macular degeneration. Results of a randomized clinical trial. Arch. Ophthalmol. 1991, 109, 1220–1231, doi:10.1001/archopht.1991.01080090044025.
[57]  Macular Photocoagulation Study Group. Argon laser photocoagulation for neovascular maculopathy. Five-year results from randomized clinical trials. Arch. Ophthalmol. 1991, 109, 1109–1114, doi:10.1001/archopht.1991.01080080069030.
[58]  Bressler, N.M.; Bressler, S.B.; Haynes, L.A.; Hao, Y.; Kaiser, P.K.; Miller, J.W.; Naor, J.; Potter, M.J.; Pournaras, C.J.; Reaves, A.; et al. Verteporfin therapy for subfoveal choroidal neovascularization in age-related macular degeneration: Four-year results of an open-label extension of 2 randomized clinical trials: TAP report No. 7. Arch. Ophthalmol. 2005, 123, 1283–1285, doi:10.1001/archopht.123.9.1283.
[59]  Blinder, K.J.; Bradley, S.; Bressler, N.M.; Bressler, S.B.; Donati, G.; Hao, Y.; Ma, C.; Menchini, U.; Miller, J.; Potter, M.J.; et al. Effect of lesion size, visual acuity, and lesion composition on visual acuity change with and without verteporfin therapy for choroidal neovascularization secondary to age-related macular degeneration: TAP and VIP report No. 1. Am. J. Ophthalmol. 2003, 136, 407–418, doi:10.1016/S0002-9394(03)00223-X.
[60]  Gragoudas, E.S.; Adamis, A.P.; Cunningham, E.T., Jr.; Feinsod, M.; Guyer, D.R. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 2004, 351, 2805–2816, doi:10.1056/NEJMoa042760.
[61]  Rosenfeld, P.J.; Brown, D.M.; Heier, J.S.; Boyer, D.S.; Kaiser, P.K.; Chung, C.Y.; Kim, R.Y. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 2006, 355, 1419–1431, doi:10.1056/NEJMoa054481.
[62]  Brown, D.M.; Kaiser, P.K.; Michels, M.; Soubrane, G.; Heier, J.S.; Kim, R.Y.; Sy, J.P.; Schneider, S. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N. Engl. J. Med. 2006, 355, 1432–1444, doi:10.1056/NEJMoa062655.
[63]  Martin, D.F.; Maguire, M.G.; Ying, G.S.; Grunwald, J.E.; Fine, S.L.; Jaffe, G.J. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J. Med. 2011, 364, 1897–1908, doi:10.1056/NEJMoa1102673.
[64]  Heier, J.S.; Boyer, D.; Nguyen, Q.D.; Marcus, D.; Roth, D.B.; Yancopoulos, G.; Stahl, N.; Ingerman, A.; Vitti, R.; Berliner, A.J.; et al. The 1-year results of CLEAR-IT 2, a phase 2 study of vascular endothelial growth factor trap-eye dosed as-needed after 12-week fixed dosing. Ophthalmology 2011, 118, 1098–1106, doi:10.1016/j.ophtha.2011.03.020.
[65]  Laude, A.; Cackett, P.D.; Vithana, E.N.; Yeo, I.Y.; Wong, D.; Koh, A.H.; Wong, T.Y.; Aung, T. Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration: Same or different disease? Prog. Retin. Eye Res. 2010, 29, 19–29.
[66]  Lai, T.Y.; Lee, G.K.; Luk, F.O.; Lam, D.S. Intravitreal ranibizumab with or without photodynamic therapy for the treatment of symptomatic polypoidal choroidal vasculopathy. Retina 2011, 31, 1581–1588, doi:10.1097/IAE.0b013e31820d3f3f.
[67]  Koh, A.; Lee, W.K.; Chen, L.J.; Chen, S.J.; Hashad, Y.; Kim, H.; Lai, T.Y.; Pilz, S.; Ruamviboonsuk, P.; Tokaji, E.; et al. Everest study: Efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy. Retina 2012, 32, 1453–1464, doi:10.1097/IAE.0b013e31824f91e8.
[68]  Cheung, C.M.; Wong, T.Y. Ranibizumab and bevacizumab for AMD. N. Engl. J. Med. 2011, 365, 2237. author reply 2237., doi:10.1056/NEJMc1107895.
[69]  Gupta, B.; Jyothi, S.; Sivaprasad, S. Current treatment options for retinal angiomatous proliferans (RAP). Br. J. Ophthalmol. 2010, 94, 672–677, doi:10.1136/bjo.2009.166975.
[70]  Bottoni, F.; Massacesi, A.; Cigada, M.; Viola, F.; Musicco, I.; Staurenghi, G. Treatment of retinal angiomatous proliferation in age-related macular degeneration: A series of 104 cases of retinal angiomatous proliferation. Arch. Ophthalmol. 2005, 123, 1644–1650, doi:10.1001/archopht.123.12.1644.
[71]  Saito, M.; Shiragami, C.; Shiraga, F.; Kano, M.; Iida, T. Comparison of intravitreal triamcinolone acetonide with photodynamic therapy and intravitreal bevacizumab with photodynamic therapy for retinal angiomatous proliferation. Am. J. Ophthalmol. 2010, 149, 472–481, doi:10.1016/j.ajo.2009.09.016.
[72]  Davitt, B.V.; Dobson, V.; Quinn, G.E.; Hardy, R.J.; Tung, B.; Good, W.V. Astigmatism in the early treatment for retinopathy of prematurity study: Findings to 3 years of age. Ophthalmology 2009, 116, 332–339, doi:10.1016/j.ophtha.2008.09.035.
[73]  Quinn, G.E.; Dobson, V.; Davitt, B.V.; Hardy, R.J.; Tung, B.; Pedroza, C.; Good, W.V. Progression of myopia and high myopia in the early treatment for retinopathy of prematurity study: Findings to 3 years of age. Ophthalmology 2008, 115, 1058–1064, doi:10.1016/j.ophtha.2007.07.028.
[74]  Quinn, G.E.; Dobson, V.; Hardy, R.J.; Tung, B.; Phelps, D.L.; Palmer, E.A. The CRYO- Retinopathy of Prematurity Cooperative Group. Visual fields measured with double-arc perimetry in eyes with threshold retinopathy of prematurity from the cryotherapy for retinopathy of prematurity trial. Ophthalmology 1996, 103, 1432–1437.
[75]  L?fqvist, C.; Niklasson, A.; Engstr?m, E.; Friberg, L.E.; Camacho-Hübner, C.; Ley, D.; Borg, J.; Smith, L.E.; Hellstr?m, A. A pharmacokinetic and dosing study of intravenous insulin-like growth factor-I and IGF-binding protein-3 complex to preterm infants. Pediatr. Res. 2009, 65, 574–579, doi:10.1203/PDR.0b013e31819d9e8c.
[76]  Wu, W.C.; Lai, C.C.; Chen, K.J.; Chen, T.L.; Wang, N.K.; Hwang, Y.S.; Yeung, L.; Li, L.M. Long-Term tolerability and serum concentration of bevacizumab (Avastin) when injected in newborn rabbit eyes. Invest. Ophthalmol. Vis. Sci. 2010, 51, 3701–3708, doi:10.1167/iovs.09-4425.
[77]  Qian, J.; Lu, Q.; Tao, Y.; Jiang, Y.R. Vitreous and plasma concentrations of apelin and vascular endothelial growth factor after intravitreal bevacizumab in eyes with proliferative diabetic retinopathy. Retina 2011, 31, 161–168.
[78]  Sato, T.; Wada, K.; Arahori, H.; Kuno, N.; Imoto, K.; Iwahashi-Shima, C.; Kusaka, S. Serum concentrations of bevacizumab (Avastin) and vascular endothelial growth factor in infants with retinopathy of prematurity. Am. J. Ophthalmol. 2012, 153, 327–333.
[79]  Early Treatment Diabetic Retinopathy Study Research Group. Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema. Early Treatment Diabetic Retinopathy Study Report Number 2. Ophthalmology 1987, 94, 761–774.
[80]  Bonini-Filho, M.A.; Jorge, R.; Barbosa, J.C.; Calucci, D.; Cardillo, J.A.; Costa, R.A. Intravitreal injection versus sub-tenon’s infusion of triamcinolone acetonide for refractory diabetic macular edema: A randomized clinical trial. Invest. Ophthalmol. Vis. Sci. 2005, 46, 3845–3849, doi:10.1167/iovs.05-0297.
[81]  Patelli, F.; Fasolino, G.; Radice, P.; Russo, S.; Zumbo, G.; FM, D.I.T.; Frisone, G.; Marchi, S. Time course of changes in retinal thickness and visual acuity after intravitreal triamcinolone acetonide for diffuse diabetic macular edema with and without previous macular laser treatment. Retina 2005, 25, 840–845, doi:10.1097/00006982-200510000-00004.
[82]  Avitabile, T.; Longo, A.; Reibaldi, A. Intravitreal triamcinolone compared with macular laser grid photocoagulation for the treatment of cystoid macular edema. Am. J. Ophthalmol. 2005, 140, 695–702.
[83]  Elman, M.J.; Raden, R.Z.; Sloan, M.D.; Butcher, T.M.; Starr, J.; Salfer-Firestone, D.; Singletary, P.V.; Coffey, T.; Gore, N.; Shabi, G.; et al. A randomized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema. Ophthalmology 2008, 115, 1447–1449, doi:10.1016/j.ophtha.2008.06.015.
[84]  Ho, A.C.; Scott, I.U.; Kim, S.J.; Brown, G.C.; Brown, M.M.; Ip, M.S.; Recchia, F.M. Anti-vascular endothelial growth factor pharmacotherapy for diabetic macular edema: A report by the American Academy of Ophthalmology. Ophthalmology 2012, 119, 2179–2188, doi:10.1016/j.ophtha.2012.07.058.
[85]  Cunningham, E.T., Jr.; Adamis, A.P.; Altaweel, M.; Aiello, L.P.; Bressler, N.M.; D'Amico, D.J.; Goldbaum, M.; Guyer, D.R.; Katz, B.; Patel, M.; et al. A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology 2005, 112, 1747–1757.
[86]  Nguyen, Q.D.; Shah, S.M.; Heier, J.S.; Do, D.V.; Lim, J.; Boyer, D.; Abraham, P.; Campochiaro, P.A. Primary end point (six months) results of the ranibizumab for edema of the macula in diabetes (READ-2) study. Ophthalmology 2009, 116, 2175–2181, doi:10.1016/j.ophtha.2009.04.023.
[87]  Mitchell, P.; Bandello, F.; Schmidt-Erfurth, U.; Lang, G.E.; Massin, P.; Schlingemann, R.O.; Sutter, F.; Simader, C.; Burian, G.; Gerstner, O.; et al. The RESTORE study: Ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology 2011, 118, 615–625, doi:10.1016/j.ophtha.2011.01.031.
[88]  Nguyen, Q.D.; Brown, D.M.; Marcus, D.M.; Boyer, D.S.; Patel, S.; Feiner, L.; Gibson, A.; Sy, J.; Rundle, A.C.; Hopkins, J.J.; et al. Ranibizumab for diabetic macular edema: Results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 2012, 119, 789–801.
[89]  Michaelides, M.; Kaines, A.; Hamilton, R.D.; Fraser-Bell, S.; Rajendram, R.; Quhill, F.; Boos, C.J.; Xing, W.; Egan, C.; Peto, T.; et al. A prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (BOLT study) 12-month data: Report 2. Ophthalmology 2010, 117, 1078–1086.
[90]  Rajendram, R.; Fraser-Bell, S.; Kaines, A.; Michaelides, M.; Hamilton, R.D.; Esposti, S.D.; Peto, T.; Egan, C.; Bunce, C.; Leslie, R.D.; et al. A 2-year prospective randomized controlled trial of intravitreal bevacizumab or laser therapy (BOLT) in the management of diabetic macular edema: 24-month data: Report 3. Arch. Ophthalmol. 2012, 130, 972–979, doi:10.1001/archophthalmol.2012.393.
[91]  Rehak, M.; Wiedemann, P. Retinal vein thrombosis: Pathogenesis and management. J. Thromb. Haemost. 2010, 8, 1886–1894, doi:10.1111/j.1538-7836.2010.03909.x.
[92]  The Central Vein Occlusion Study. Baseline and early natural history report. Arch. Ophthalmol. 1993, 111, 1087–1095, doi:10.1001/archopht.1993.01090080083022.
[93]  The Branch Vein Occlusion Study Group. Argon laser photocoagulation for macular edema in branch vein occlusion. Am. J. Ophthalmol. 1984, 98, 271–282.
[94]  The Central Vein Occlusion Study Group M Report. Evaluation of grid pattern photocoagulation for macular edema in central vein occlusion. Ophthalmology 1995, 102, 1425–1433.
[95]  The Branch Vein Occlusion Study Group. Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion. A randomized clinical trial. Arch. Ophthalmol. 1986, 104, 34–41, doi:10.1001/archopht.1986.01050130044017.
[96]  The Central Vein Occlusion Study Group N Report. A randomized clinical trial of early panretinal photocoagulation for ischemic central vein occlusion. Ophthalmology 1995, 102, 1434–1444.
[97]  Roth, D.B.; Cukras, C.; Radhakrishnan, R.; Feuer, W.J.; Yarian, D.L.; Green, S.N.; Wheatley, H.M.; Prenner, J. Intravitreal triamcinolone acetonide injections in the treatment of retinal vein occlusions. Ophthalmic Surg. Lasers Imaging 2008, 39, 446–454, doi:10.3928/15428877-20081101-16.
[98]  Cekic, O.; Chang, S.; Tseng, J.J.; Barile, G.R.; Weissman, H.; Del Priore, L.V.; Schiff, W.M.; Weiss, M.; Klancnik, J.M., Jr. Intravitreal triamcinolone treatment for macular edema associated with central retinal vein occlusion and hemiretinal vein occlusion. Retina 2005, 25, 846–850, doi:10.1097/00006982-200510000-00005.
[99]  Jonas, J.B.; Akkoyun, I.; Kamppeter, B.; Kreissig, I.; Degenring, R.F. Branch retinal vein occlusion treated by intravitreal triamcinolone acetonide. Eye (Lond) 2005, 19, 65–71, doi:10.1038/sj.eye.6701395.
[100]  Scott, I.U.; Ip, M.S.; VanVeldhuisen, P.C.; Oden, N.L.; Blodi, B.A.; Fisher, M.; Chan, C.K.; Gonzalez, V.H.; Singerman, L.J.; Tolentino, M. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with standard care to treat vision loss associated with macular edema secondary to branch retinal vein occlusion: The Standard Care vs. Corticosteroid for Retinal Vein Occlusion (SCORE) study report 6. Arch. Ophthalmol. 2009, 127, 1115–1128.
[101]  Ip, M.S.; Scott, I.U.; VanVeldhuisen, P.C.; Oden, N.L.; Blodi, B.A.; Fisher, M.; Singerman, L.J.; Tolentino, M.; Chan, C.K.; Gonzalez, V.H. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with observation to treat vision loss associated with macular edema secondary to central retinal vein occlusion: The Standard Care vs. Corticosteroid for Retinal Vein Occlusion (SCORE) study report 5. Arch. Ophthalmol. 2009, 127, 1101–1114, doi:10.1001/archophthalmol.2009.234.
[102]  Campochiaro, P.A.; Hafiz, G.; Shah, S.M.; Nguyen, Q.D.; Ying, H.; Do, D.V.; Quinlan, E.; Zimmer-Galler, I.; Haller, J.A.; Solomon, S.D.; et al. Ranibizumab for macular edema due to retinal vein occlusions: Implication of VEGF as a critical stimulator. Mol. Ther. 2008, 16, 791–799.
[103]  Spaide, R.F.; Chang, L.K.; Klancnik, J.M.; Yannuzzi, L.A.; Sorenson, J.; Slakter, J.S.; Freund, K.B.; Klein, R. Prospective study of intravitreal ranibizumab as a treatment for decreased visual acuity secondary to central retinal vein occlusion. Am. J. Ophthalmol. 2009, 147, 298–306, doi:10.1016/j.ajo.2008.08.016.
[104]  Campochiaro, P.A.; Heier, J.S.; Feiner, L.; Gray, S.; Saroj, N.; Rundle, A.C.; Murahashi, W.Y.; Rubio, R.G. Ranibizumab for macular edema following branch retinal vein occlusion: Six-month primary end point results of a phase III study. Ophthalmology 2010, 117, 1102–1112, doi:10.1016/j.ophtha.2010.02.021.
[105]  Kinge, B.; Stordahl, P.B.; Forsaa, V.; Fossen, K.; Haugstad, M.; Helgesen, O.H.; Seland, J.; Stene-Johansen, I. Efficacy of ranibizumab in patients with macular edema secondary to central retinal vein occlusion: Results from the sham-controlled ROCC study. Am. J. Ophthalmol. 2010, 150, 310–314, doi:10.1016/j.ajo.2010.03.028.
[106]  Brown, D.M.; Campochiaro, P.A.; Bhisitkul, R.B.; Ho, A.C.; Gray, S.; Saroj, N.; Adamis, A.P.; Rubio, R.G.; Murahashi, W.Y. Sustained benefits from ranibizumab for macular edema following branch retinal vein occlusion: 12-month outcomes of a phase III study. Ophthalmology 2011, 118, 1594–1602.
[107]  Brown, D.M.; Campochiaro, P.A.; Singh, R.P.; Li, Z.; Gray, S.; Saroj, N.; Rundle, A.C.; Rubio, R.G.; Murahashi, W.Y. Ranibizumab for macular edema following central retinal vein occlusion: Six-month primary end point results of a phase III study. Ophthalmology 2010, 117, 1124–1133, doi:10.1016/j.ophtha.2010.02.022.
[108]  Campochiaro, P.A.; Brown, D.M.; Awh, C.C.; Lee, S.Y.; Gray, S.; Saroj, N.; Murahashi, W.Y.; Rubio, R.G. Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: Twelve-month outcomes of a phase III study. Ophthalmology 2011, 118, 2041–2049, doi:10.1016/j.ophtha.2011.02.038.
[109]  Heier, J.S.; Campochiaro, P.A.; Yau, L.; Li, Z.; Saroj, N.; Rubio, R.G.; Lai, P. Ranibizumab for macular edema due to retinal vein occlusions: Long-term follow-up in the HORIZON trial. Ophthalmology 2012, 119, 802–809, doi:10.1016/j.ophtha.2011.12.005.
[110]  Wu, L.; Arevalo, J.F.; Roca, J.A.; Maia, M.; Berrocal, M.H.; Rodriguez, F.J.; Evans, T.; Costa, R.A.; Cardillo, J. Comparison of two doses of intravitreal bevacizumab (Avastin) for treatment of macular edema secondary to branch retinal vein occlusion: Results from the Pan-American Collaborative Retina Study Group at 6 months of follow-up. Retina 2008, 28, 212–219, doi:10.1097/IAE.0b013e3181619bee.
[111]  Iturralde, D.; Spaide, R.F.; Meyerle, C.B.; Klancnik, J.M.; Yannuzzi, L.A.; Fisher, Y.L.; Sorenson, J.; Slakter, J.S.; Freund, K.B.; Cooney, M.; et al. Intravitreal bevacizumab (Avastin) treatment of macular edema in central retinal vein occlusion: A short-term study. Retina 2006, 26, 279–284.
[112]  Rabena, M.D.; Pieramici, D.J.; Castellarin, A.A.; Nasir, M.A.; Avery, R.L. Intravitreal bevacizumab (Avastin) in the treatment of macular edema secondary to branch retinal vein occlusion. Retina 2007, 27, 419–425, doi:10.1097/IAE.0b013e318030e77e.
[113]  Alon, T.; Hemo, I.; Itin, A.; Pe'er, J.; Stone, J.; Keshet, E. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat. Med. 1995, 1, 1024–1028.
[114]  Early Treatment for Retinopathy of Prematurity Cooperative Group. Revised indications for the treatment of retinopathy of prematurity: Results of the early treatment for retinopathy of prematurity randomized trial. Arch. Ophthalmol. 2003, 121, 1684–1694, doi:10.1001/archopht.121.12.1684.
[115]  Repka, M.X.; Tung, B.; Good, W.V.; Shapiro, M.; Capone, A., Jr.; Baker, J.D.; Barr, C.C.; Phelps, D.L.; van Heuven, W.A. Outcome of eyes developing retinal detachment during the Early Treatment for Retinopathy of Prematurity Study (ETROP). Arch. Ophthalmol. 2006, 124, 24–30, doi:10.1001/archopht.124.1.24.
[116]  Gilbert, W.S.; Quinn, G.E.; Dobson, V.; Reynolds, J.; Hardy, R.J.; Palmer, E.A. Multicenter Trial of Cryotherapy for Retinopathy of Prematurity Cooperative Group. Partial retinal detachment at 3 months after threshold retinopathy of prematurity: Long-term structural and functional outcome. Arch. Ophthalmol. 1996, 114, 1085–1091, doi:10.1001/archopht.1996.01100140287005.
[117]  Wu, W.C.; Drenser, K.A.; Lai, M.; Capone, A.; Trese, M.T. Plasmin enzyme-assisted vitrectomy for primary and reoperated eyes with stage 5 retinopathy of prematurity. Retina 2008, 28, S75–S80, doi:10.1097/IAE.0b013e318158ea0e.
[118]  Sato, T.; Kusaka, S.; Shimojo, H.; Fujikado, T. Vitreous levels of erythropoietin and vascular endothelial growth factor in eyes with retinopathy of prematurity. Ophthalmology 2009, 116, 1599–1603, doi:10.1016/j.ophtha.2008.12.023.
[119]  Sato, T.; Kusaka, S.; Shimojo, H.; Fujikado, T. Simultaneous analyses of vitreous levels of 27 cytokines in eyes with retinopathy of prematurity. Ophthalmology 2009, 116, 2165–2169, doi:10.1016/j.ophtha.2009.04.026.
[120]  Smith, L.E. Through the eyes of a child: Understanding retinopathy through ROP the Friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 2008, 49, 5177–5182, doi:10.1167/iovs.08-2584.
[121]  Mintz-Hittner, H.A.; Kuffel, R.R., Jr. Intravitreal injection of bevacizumab (Avastin) for treatment of stage 3 retinopathy of prematurity in zone I or posterior zone II. Retina 2008, 28, 831–838, doi:10.1097/IAE.0b013e318177f934.
[122]  Mintz-Hittner, H.A.; Kennedy, K.A.; Chuang, A.Z. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N. Engl. J. Med. 2011, 364, 603–615, doi:10.1056/NEJMoa1007374.
[123]  Foroozan, R.; Connolly, B.P.; Tasman, W.S. Outcomes after laser therapy for threshold retinopathy of prematurity. Ophthalmology 2001, 108, 1644–1646, doi:10.1016/S0161-6420(01)00695-9.
[124]  Kychenthal, A.; Dorta, P.; Katz, X. Zone I retinopathy of prematurity: Clinical characteristics and treatment outcomes. Retina 2006, 26, S11–S15, doi:10.1097/01.iae.0000244285.79004.e6.
[125]  O'Keefe, M.; Lanigan, B.; Long, V.W. Outcome of zone 1 retinopathy of prematurity. Acta Ophthalmol. Scand. 2003, 81, 614–616, doi:10.1111/j.1395-3907.2003.00171.x.
[126]  Wu, W.C.; Yeh, P.T.; Chen, S.N.; Yang, C.M.; Lai, C.C.; Kuo, H.K. Effects and complications of bevacizumab use in patients with retinopathy of prematurity: A multicenter study in Taiwan. Ophthalmology 2011, 118, 176–183.
[127]  Lalwani, G.A.; Berrocal, A.M.; Murray, T.G.; Buch, M.; Cardone, S.; Hess, D.; Johnson, R.A.; Puliafito, C.A. Off-Label use of intravitreal bevacizumab (Avastin) for salvage treatment in progressive threshold retinopathy of prematurity. Retina 2008, 28, S13–S18, doi:10.1097/IAE.0b013e3181644ad2.
[128]  Quiroz-Mercado, H.; Martinez-Castellanos, M.A.; Hernandez-Rojas, M.L.; Salazar-Teran, N.; Chan, R.V. Antiangiogenic therapy with intravitreal bevacizumab for retinopathy of prematurity. Retina 2008, 28, S19–S25, doi:10.1097/IAE.0b013e318159ec6b.
[129]  Kusaka, S.; Shima, C.; Wada, K.; Arahori, H.; Shimojyo, H.; Sato, T.; Fujikado, T. Efficacy of intravitreal injection of bevacizumab for severe retinopathy of prematurity: A pilot study. Br. J. Ophthalmol. 2008, 92, 1450–1455.
[130]  Kong, L.; Mintz-Hittner, H.A.; Penland, R.L.; Kretzer, F.L.; Chevez-Barrios, P. Intravitreous bevacizumab as anti-vascular endothelial growth factor therapy for retinopathy of prematurity: A morphologic study. Arch. Ophthalmol. 2008, 126, 1161–1163.
[131]  Rishi, E.; Rishi, P.; Ratra, D.; Bhende, M. Off-label use of bevacizumab in retinopathy of prematurity. Retina 2009, 29, 284. author reply 284–285.
[132]  Travassos, A.; Teixeira, S.; Ferreira, P.; Regadas, I.; Travassos, A.S.; Esperancinha, F.E.; Prieto, I.; Pires, G.; van Velze, R.; Valido, A.; et al. Intravitreal bevacizumab in aggressive posterior retinopathy of prematurity. Ophthalmic Surg. Lasers Imaging 2007, 38, 233–237.
[133]  Azad, R.; Chandra, P. Intravitreal bevacizumab in aggressive posterior retinopathy of prematurity. Indian J. Ophthalmol. 2007, 55, 319. author reply 320.
[134]  Chung, E.J.; Kim, J.H.; Ahn, H.S.; Koh, H.J. Combination of laser photocoagulation and intravitreal bevacizumab (Avastin) for aggressive zone I retinopathy of prematurity. Graefes Arch. Clin. Exp. Ophthalmol. 2007, 245, 1727–1730, doi:10.1007/s00417-007-0661-y.
[135]  Harder, B.C.; von Baltz, S.; Jonas, J.B.; Schlichtenbrede, F.C. Intravitreal bevacizumab for retinopathy of prematurity. J. Ocul. Pharmacol. Ther. 2011, 27, 623–627, doi:10.1089/jop.2011.0060.
[136]  Raizada, S.; Al Kandari, J.; Al Foudari, A. Early experience with intravitreal bevacizumab combined with laser treatment for retinopathy of prematurity. Middle East. Afr. J. Ophthalmol. 2011, 18, 196–197, doi:10.4103/0974-9233.80716.
[137]  Axer-Siegel, R.; Snir, M.; Ron, Y.; Friling, R.; Sirota, L.; Weinberger, D. Intravitreal bevacizumab as supplemental treatment or monotherapy for severe retinopathy of prematurity. Retina 2011, 31, 1239–1247, doi:10.1097/IAE.0b013e31820d4000.
[138]  Wutthiworawong, B.; Thitiratsanont, U.; Saovaprut, C.; Subhangkasen, I.; Geyuraphun, B.; Ampornprut, A.; Phumongkutchai, J.; Tephusdinnaayuthaya, S. Combine intravitreal bevacizumab injection with laser treatment for aggressive posterior retinopathy of prematurity (AP-ROP). J. Med. Assoc. Thai 2011, 94 Suppl 3, S15–S21.
[139]  Lim, L.S.; Mitchell, P.; Wong, T.Y. Bevacizumab for retinopathy of prematurity. N. Engl. J. Med. 2011, 364, 2360. author reply 2361-2362.
[140]  Hard, A.L.; Hellstrom, A. On safety, pharmacokinetics and dosage of bevacizumab in ROP treatment—A review. Acta Paediatr. 2011, 100, 1523–1527, doi:10.1111/j.1651-2227.2011.02445.x.
[141]  Micieli, J.A.; Surkont, M.; Smith, A.F. A systematic analysis of the off-label use of bevacizumab for severe retinopathy of prematurity. Am. J. Ophthalmol. 2009, 148, 536–543.
[142]  Lim, L.S.; Cheung, C.M.; Mitchell, P.; Wong, T.Y. Emerging evidence concerning systemic safety of anti-VEGF agents—Should ophthalmologists be concerned? Am. J. Ophthalmol. 2011, 152, 329–331, doi:10.1016/j.ajo.2011.05.040.
[143]  Heidary, G.; Vanderveen, D.; Smith, L.E. Retinopathy of prematurity: Current concepts in molecular pathogenesis. Semin. Ophthalmol. 2009, 24, 77–81, doi:10.1080/08820530902800314.
[144]  Lashkari, K.; Hirose, T.; Yazdany, J.; McMeel, J.W.; Kazlauskas, A.; Rahimi, N. Vascular endothelial growth factor and hepatocyte growth factor levels are differentially elevated in patients with advanced retinopathy of prematurity. Am. J. Pathol. 2000, 156, 1337–1344, doi:10.1016/S0002-9440(10)65004-3.
[145]  Van der Valk, R.; Webers, C.A.; Schouten, J.S.; Zeegers, M.P.; Hendrikse, F.; Prins, M.H. Intraocular pressure-lowering effects of all commonly used glaucoma drugs: A meta-analysis of randomized clinical trials. Ophthalmology 2005, 112, 1177–1185, doi:10.1016/j.ophtha.2005.01.042.
[146]  Stewart, W.C.; Konstas, A.G.; Nelson, L.A.; Kruft, B. Meta-analysis of 24-hour intraocular pressure studies evaluating the efficacy of glaucoma medicines. Ophthalmology 2008, 115, 1117–1122, doi:10.1016/j.ophtha.2007.10.004.
[147]  Poyer, J.F.; Millar, C.; Kaufman, P.L. Prostaglandin F2 alpha effects on isolated rhesus monkey ciliary muscle. Invest. Ophthalmol. Vis. Sci. 1995, 36, 2461–2465.
[148]  Lindsey, J.D.; Kashiwagi, K.; Kashiwagi, F.; Weinreb, R.N. Prostaglandin action on ciliary smooth muscle extracellular matrix metabolism: Implications for uveoscleral outflow. Surv. Ophthalmol. 1997, 41 Suppl 2, S53–S59, doi:10.1016/S0039-6257(97)80008-2.
[149]  Nilsson, S.F.; Samuelsson, M.; Bill, A.; Stjernschantz, J. Increased uveoscleral outflow as a possible mechanism of ocular hypotension caused by prostaglandin F2 alpha-1-isopropylester in the cynomolgus monkey. Exp. Eye Res. 1989, 48, 707–716, doi:10.1016/0014-4835(89)90011-0.
[150]  Broadway, D.; Grierson, I.; Hitchings, R. Adverse effects of topical antiglaucomatous medications on the conjunctiva. Br. J. Ophthalmol. 1993, 77, 590–596, doi:10.1136/bjo.77.9.590.
[151]  Schwab, I.R.; Linberg, J.V.; Gioia, V.M.; Benson, W.H.; Chao, G.M. Foreshortening of the inferior conjunctival fornix associated with chronic glaucoma medications. Ophthalmology 1992, 99, 197–202.
[152]  Baudouin, C.; Pisella, P.J.; Fillacier, K.; Goldschild, M.; Becquet, F.; de Saint Jean, M.; Bechetoille, A. Ocular surface inflammatory changes induced by topical antiglaucoma drugs: Human and animal studies. Ophthalmology 1999, 106, 556–563, doi:10.1016/S0161-6420(99)90116-1.
[153]  Nakajima, T.; Matsugi, T.; Goto, W.; Kageyama, M.; Mori, N.; Matsumura, Y.; Hara, H. New fluoroprostaglandin F(2alpha) derivatives with prostanoid FP-receptor agonistic activity as potent ocular-hypotensive agents. Biol. Pharm. Bull. 2003, 26, 1691–1695, doi:10.1248/bpb.26.1691.
[154]  Takagi, Y.; Nakajima, T.; Shimazaki, A.; Kageyama, M.; Matsugi, T.; Matsumura, Y.; Gabelt, B.T.; Kaufman, P.L.; Hara, H. Pharmacological characteristics of AFP-168 (tafluprost), a new prostanoid FP receptor agonist, as an ocular hypotensive drug. Exp. Eye Res. 2004, 78, 767–776, doi:10.1016/j.exer.2003.12.007.
[155]  Uusitalo, H.; Pillunat, L.E.; Ropo, A. Efficacy and safety of tafluprost 0.0015% versus latanoprost 0.005% eye drops in open-angle glaucoma and ocular hypertension: 24-month results of a randomized, double-masked phase III study. Acta Ophthalmol. 2010, 88, 12–19, doi:10.1111/j.1755-3768.2010.01862.x.
[156]  Chabi, A.; Varma, R.; Tsai, J.C.; Lupinacci, R.; Pigeon, J.; Baranak, C.; Noble, L.; Lines, C.; Ho, T.W. Randomized clinical trial of the efficacy and safety of preservative-free tafluprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am. J. Ophthalmol. 2012, 153, 1187–1196, doi:10.1016/j.ajo.2011.11.008.
[157]  Liang, H.; Baudouin, C.; Pauly, A.; Brignole-Baudouin, F. Conjunctival and corneal reactions in rabbits following short- and repeated exposure to preservative-free tafluprost, commercially available latanoprost and 0.02% benzalkonium chloride. Br. J. Ophthalmol. 2008, 92, 1275–1282, doi:10.1136/bjo.2008.138768.
[158]  Ammar, D.A.; Noecker, R.J.; Kahook, M.Y. Effects of benzalkonium chloride-preserved, polyquad-preserved, and sofzia-preserved topical glaucoma medications on human ocular epithelial cells. Adv. Ther. 2010, 27, 837–845, doi:10.1007/s12325-010-0070-1.
[159]  Fogagnolo, P.; Rossetti, L. Medical treatment of glaucoma: Present and future. Expert Opin. Investig. Drugs 2011, 20, 947–959, doi:10.1517/13543784.2011.579901.
[160]  Waki, M.; Yoshida, Y.; Oka, T.; Azuma, M. Reduction of intraocular pressure by topical administration of an inhibitor of the Rho-associated protein kinase. Curr. Eye Res. 2001, 22, 470–474, doi:10.1076/ceyr.22.6.470.5489.
[161]  Rao, P.V.; Deng, P.F.; Kumar, J.; Epstein, D.L. Modulation of aqueous humor outflow facility by the Rho kinase-specific inhibitor Y-27632. Invest. Ophthalmol. Vis. Sci. 2001, 42, 1029–1037.
[162]  Kaufman, P.L. Enhancing trabecular outflow by disrupting the actin cytoskeleton, increasing uveoscleral outflow with prostaglandins, and understanding the pathophysiology of presbyopia interrogating mother nature: Asking why, asking how, recognizing the signs, following the trail. Exp. Eye Res. 2008, 86, 3–17, doi:10.1016/j.exer.2007.10.007.
[163]  Ethier, C.R.; Read, A.T.; Chan, D.W. Effects of latrunculin-B on outflow facility and trabecular meshwork structure in human eyes. Invest. Ophthalmol. Vis. Sci. 2006, 47, 1991–1998, doi:10.1167/iovs.05-0327.
[164]  Thomasy, S.M.; Wood, J.A.; Kass, P.H.; Murphy, C.J.; Russell, P. Substratum stiffness and latrunculin B regulate matrix gene and protein expression in human trabecular meshwork cells. Invest. Ophthalmol. Vis. Sci. 2012, 53, 952–958.
[165]  Shah, S.S.; Denham, L.V.; Elison, J.R.; Bhattacharjee, P.S.; Clement, C.; Huq, T.; Hill, J.M. Drug delivery to the posterior segment of the eye for pharmacologic therapy. Expert Rev. Ophthalmol. 2010, 5, 75–93, doi:10.1586/eop.09.70.
[166]  Cvetkovic, R.S.; Wellington, K. Valganciclovir: A review of its use in the management of CMV infection and disease in immunocompromised patients. Drugs 2005, 65, 859–878, doi:10.2165/00003495-200565060-00012.
[167]  Janoria, K.G.; Gunda, S.; Boddu, S.H.; Mitra, A.K. Novel approaches to retinal drug delivery. Expert Opin. Drug Deliv. 2007, 4, 371–388, doi:10.1517/17425247.4.4.371.
[168]  Gaudana, R.; Ananthula, H.K.; Parenky, A.; Mitra, A.K. Ocular drug delivery. AAPS J. 2010, 12, 348–360, doi:10.1208/s12248-010-9183-3.
[169]  Rao, V.R.; Prescott, E.; Shelke, N.B.; Trivedi, R.; Thomas, P.; Struble, C.; Gadek, T.; O'Neill, C.A.; Kompella, U.B. Delivery of SAR 1118 to the retina via ophthalmic drops and its effectiveness in a rat streptozotocin (STZ) model of diabetic retinopathy (DR). Invest. Ophthalmol. Vis. Sci. 2010, 51, 5198–5204, doi:10.1167/iovs.09-5144.
[170]  Ghate, D.; Edelhauser, H.F. Ocular drug delivery. Expert Opin. Drug Deliv. 2006, 3, 275–287.
[171]  Lin, C.W.; Gonzalez, P.; Yuan, F. Cellular pharmacokinetic and pharmacodynamic analyses of ethacrynic acid: Implications in topical drug delivery in the eye. Mol. Vis. 2011, 17, 2507–2515.
[172]  Haller, J.A.; Bandello, F.; Belfort, R., Jr.; Blumenkranz, M.S.; Gillies, M.; Heier, J.; Loewenstein, A.; Yoon, Y.H.; Jacques, M.L.; Jiao, J. Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion. Ophthalmology 2010, 117, 1134–1146, doi:10.1016/j.ophtha.2010.03.032.
[173]  Hsu, J. Drug delivery methods for posterior segment disease. Curr. Opin. Ophthalmol. 2007, 18, 235–239, doi:10.1097/ICU.0b013e3281108000.
[174]  Pinto Reis, C.; Neufeld, R.J.; Ribeiro, A.J.; Veiga, F. Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine 2006, 2, 53–65.
[175]  Lallemand, F.; Daull, P.; Benita, S.; Buggage, R.; Garrigue, J.S. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J. Drug Deliv. 2012, 2012, doi:10.1155/2012/604204.
[176]  Mathiowitz, E.; Jacob, J.S.; Jong, Y.S.; Carino, G.P.; Chickering, D.E.; Chaturvedi, P.; Santos, C.A.; Vijayaraghavan, K.; Montgomery, S.; Bassett, M.; et al. Biologically erodable microspheres as potential oral drug delivery systems. Nature 1997, 386, 410–414.
[177]  Hong, G.B.; Zhou, J.X.; Yuan, R.X. Folate-targeted polymeric micelles loaded with ultrasmall superparamagnetic iron oxide: Combined small size and high MRI sensitivity. Int. J. Nanomed. 2012, 7, 2863–2872.
[178]  Harada, M.; Iwata, C.; Saito, H.; Ishii, K.; Hayashi, T.; Yashiro, M.; Hirakawa, K.; Miyazono, K.; Kato, Y.; Kano, M.R. NC-6301, a polymeric micelle rationally optimized for effective release of docetaxel, is potent but is less toxic than native docetaxel in vivo. Int. J. Nanomed. 2012, 7, 2713–2727.
[179]  Kranz, H.; Ubrich, N.; Maincent, P.; Bodmeier, R. Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states. J. Pharm. Sci. 2000, 89, 1558–1566, doi:10.1002/1520-6017(200012)89:12<1558::AID-JPS6>3.0.CO;2-8.
[180]  Barak, Y.; Heroman, W.J.; Tezel, T.H. The past, present, and future of exudative age-related macular degeneration treatment. Middle East. Afr. J. Ophthalmol. 2012, 19, 43–51, doi:10.4103/0974-9233.92115.
[181]  Carrasquillo, K.G.; Ricker, J.A.; Rigas, I.K.; Miller, J.W.; Gragoudas, E.S.; Adamis, A.P. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres. Invest. Ophthalmol. Vis. Sci. 2003, 44, 290–299.
[182]  Li, F.; Hurley, B.; Liu, Y.; Leonard, B.; Griffith, M. Controlled release of bevacizumab through nanospheres for extended treatment of age-related macular degeneration. Open Ophthalmol. J. 2012, 6, 54–58, doi:10.2174/1874364101206010054.
[183]  Iriyama, A.; Oba, M.; Ishii, T.; Nishiyama, N.; Kataoka, K.; Tamaki, Y.; Yanagi, Y. Gene transfer using micellar nanovectors inhibits choroidal neovascularization in vivo. PLoS One 2011, 6, e28560.
[184]  Natarajan, J.V.; Ang, M.; Darwitan, A.; Chattopadhyay, S.; Wong, T.T.; Venkatraman, S.S. Nanomedicine for glaucoma: Liposomes provide sustained release of latanoprost in the eye. Int. J. Nanomed. 2012, 7, 123–131.
[185]  Bhagav, P.; Upadhyay, H.; Chandran, S. Brimonidine tartrate-eudragit long-acting nanoparticles: Formulation, optimization, in vitro and in vivo evaluation. AAPS PharmSciTech 2011, 12, 1087–1101, doi:10.1208/s12249-011-9675-1.
[186]  De Campos, A.M.; Sanchez, A.; Gref, R.; Calvo, P.; Alonso, M.J. The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur. J. Pharm. Sci. 2003, 20, 73–81.
[187]  Holden, C.A.; Tyagi, P.; Thakur, A.; Kadam, R.; Jadhav, G.; Kompella, U.B.; Yang, H. Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomedicine 2012, 8, 776–783, doi:10.1016/j.nano.2011.08.018.
[188]  Checa-Casalengua, P.; Jiang, C.; Bravo-Osuna, I.; Tucker, B.A.; Molina-Martinez, I.T.; Young, M.J.; Herrero-Vanrell, R. Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure. J. Control. Release 2011, 156, 92–100, doi:10.1016/j.jconrel.2011.06.023.
[189]  Ong, F.S.; Grody, W.W.; Deignan, J.L. Privacy and data management in the era of massively parallel next-generation sequencing. Expert Rev. Mol. Diagn. 2011, 11, 457–459, doi:10.1586/erm.11.34.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133