全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estimation of Saturated Hydraulic Conductivity and Inverse of Macroscopic Capillary Length Using PTFs

Keywords: Infiltration , Inverse of macroscopic capillary length , Pedotransfer functions , Saturated hydraulic conductivity.

Full-Text   Cite this paper   Add to My Lib

Abstract:

Saturated hydraulic conductivity (Kfs) and macroscopic capillary length of soil pores are important hydraulic properties for water flow and solute transport modeling. Measuring these parameters is tedious, time consuming and expensive. One way is using indirect methods such as Pedotransfer functions (PTFs). The objective of this research was to develop some PTFs for estimating saturated hydraulic conductivity and inverse of macroscopic capillary length parameters ( *). Therefore, the coefficients, Kfs and * from 60 points of Azadegan plain in Shahrekord were measured using single ring and multiple constant head method. Also, some of the readily available soil parameters from the two first pedogenic layers of the soils were obtained. Then, the desired PTFs were developed using stepwise multiple linear regression. The accuracy and reliability of the derived PTFs were evaluated using root mean square error (RMSE), mean error (ME), relative error (RE) and Pearson correlation coefficient (r). The highest correlation coefficients of 0.92 and 0.72 were found between Kfs-bulk density and *-bulk density, respectively. There was no significant correlation between soil particle size distribution and Kfs and *. This can be related to the fact that most of the soil samples were similar in texture and macro pores. The most efficient PTFs in predicting Kfs and * could explain 85 and 66 percent of the variability of these parameters, respectively. All the derived PTFs underestimated the Kfs and * parameters.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133