|
从电解水技术发展探讨污水电解制氢同时去除污染的前景
|
Abstract:
[1] | C. C. Vǎduva, N. Vaszilcsin, A. Kellenberger, et al. Catalytic en-hancement of hydrogen evolution reaction on copper in the presence of benzylamine. International Journal of Hydrogen Energy, 2011, 36: 6994-7001. |
[2] | 倪萌, M. K. H. Leung and K. Sumathy. 电解水制氢技术进展[J]. 能源环境保护, 2004, 18(5): 5-10. |
[3] | G. S. Tasic, S. P. Maslovara, D. L. Zugic, et al. Characterization of the Ni-Mo catalyst formed in situ during hydrogen generation from alkaline water electrolysis. International Journal of Hydrogen Energy, 2011, 36: 11588-11595. |
[4] | I. Herraiz-Cardona, E. Ortega, L. Vázquez-Gómez, et al. Electrochemical characterization of a NiCo/Zn cathode for hy-drogen generation. International Journal of Hydrogen Energy, 2011, 36: 11578-11587. |
[5] | H. Ito, T. Maeda, A. Nakano, et al. Properties of Nafion membranes under PEM water, electrolysis conditions. International Journal of Hydrogen Energy, 2011, 36: 10527-10540. |
[6] | S. Sawada, T. Yamaki, T. Maeno, et al. Solid polymer electrolyte water electrolysis systems for hydrogen production based on our newly developed membranes, Part I: Analysis of voltage-current characteristics. Progress in Nuclear Energy, 2008, 50: 443-448. |
[7] | J. Udagawa, P. Aguiar and N. P. Brandon. Hydrogen production through steam electrolysis: Control strategies for a athode-sup- ported intermediate temperature solid oxide electrolysis cell. Journal of Power Sources, 2008, 180: 354-364. |
[8] | B. Yu, W. Q. Zhang, J. M. Xu, et al. Status and research of high- ly efficient hydrogen production through high temperature steam electrolysis at INET. International Journal of Hydrogen Energy, 2010, 35(7): 2829-2835. |
[9] | 李琼玖, 王建华, 李德宽等. 水电解制氢技术的进展及其在煤制甲醇中的应用[J]. 中外能源, 2008, 13: 35-43. |
[10] | F. Kargi. Comparison of different electrodes in hydrogen gas production from electrohydrolysis of wastewater organics using photovoltaic cells (PVC). International Journal of Hydrogen Energy, 2011, 36: 3450-3456. |
[11] | F. Kargi, E. C. Catalkaya. Electrohydrolysis of landfill leachate organics for hydrogen gas production and COD removal. International Journal of Hydrogen Energy, 2011, 36: 8252-8260. |
[12] | F. Kargi, E. C. Catalkaya. Hydrogen gas production from olive mill wastewater by electrohydrolysis with simultaneous COD removal. International Journal of Hydrogen Energy, 2011, 36: 3457-3464. |
[13] | F. Kargi, E. C. Catalkaya and S. Uzuncar. Hydrogen gas production from waste anaerobic sludge by electrohydrolysis: Effects of applied DC voltage. International Journal of Hydrogen Energy, 2011, 36: 2049-2056. |
[14] | F. Kargi, S. Uzuncar. Simultaneous hydrogen gas formation and COD removal from cheese whey wastewater by electrohydroly- sis. International Journal of Hydrogen Energy, 2012, 37: 11656- 11665. |
[15] | H. Park , K.-H. Choo, H.-S. Park, et al. Electrochemical oxidation and microfiltration of municipal wastewater with simultaneous hydrogen production: Influence of organic and particulate matter. Chemical Engineering Journal, 2013, 215-216: 802-810. |
[16] | J. Y. Jiang, J. L. Hu, M. X. Cui, et al. Integration of hydrogen production and waste heat recovery in electrochemical wastewater treatment. Renewable Energy, 2012, 43: 179-182. |
[17] | 马伟, 程子洪, 张星等. 一种废水处理同时制氢的装置和方法[P]. 中国专利: 201110331982.9, 2012-11-7. |
[18] | W. L. Guo, L. Li, L. L. Li, et al. Hydrogen production via electrolysis of aqueous formic acid solutions. International Journal of Hydrogen Energy, 2011, 36: 9415-9419. |
[19] | J. R. Ambler, B. E. Logan. Evaluation of stainless steel cathodes and a bicarbonate buffer for hydrogen production in microbial electrolysis cells using a new method for measuring gas production. International Journal of Hydrogen Energy, 2011, 36: 160- 166. |
[20] | A. W. Jeremiasse, J. Bergsma, J. M. Kleijn, et al. Performance of metal alloys as hydrogen evolution reaction catalysts in a microbial electrolysis cell. International Journal of Hydrogen Energy, 2011, 36: 10482-10489. |