|
Pure Mathematics 2011
含变号权的p-Laplcean算子的特征值问题
|
Abstract:
本文研究含不定权的Hardy-Sobolev算子的特征值问题(不定权表示权函数 可以变号,并具有非平凡的正部),讨论了第一特征值的单一性、非第一特征值的特征函数的变号性和特征值序列的无穷性。并证明了Fu ik谱中非平凡曲线的存在性。
In this paper we study the eigenvalue problem for the -Laplcean operator with indefinite weights. The simplicity, isolation of the first eigenvalue is studied here. Furthermore, the existence of a nontrivial curve is shown in the Fu ik spectrum.
[1] | A. Anane. Etude des valeurs propres et de la resonnance pour l’operateur p-laplacian. Comptes Rendus de l’Académie des Sciences, 1987, 305(6): 725-728. |
[2] | W. Allegretto, Y. X. Hang. A picone identity for the p-Laplacian and applications. Nonlinear Analysis TMA, 1998, 32(7): 819-830. |
[3] | A. Szulkin, M. Wilem. Eigenvalue problems with indefinite weights. Studia Mathematica, 1999, 135(2): 199-201. |
[4] | M. Cuesta. Eigenvalue problems for the p-Laplacian with indefinite weights. Electronic Journal of Differential Equations, 2001, 2001(33): 1-9. |
[5] | K. Sandeep. On the first Eigenfunction of a perturbed Hardy- Sobolev Operator. Nonlinear Differential Equations and Applications, 2003, 10(2): 223-253. |
[6] | K. Sreenadh. On the Fu?ik spectrum of Hardy-Sobolev Operator. Nonlinear Analysis TMA, 2002, 51(7): 1167-1185. |
[7] | L. Boccardo, F. Murat. Almost convergence of gradients of solutions to elliptic and parabolic equations. Nonlinear Analysis TMA, 1992, 19(6): 581-597. |
[8] | H. Brezis, E. Lieb. A relation between point convergence of functions and convergence of functionals. Proc. AMS, 1983, 88(3): 486-490. |
[9] | N. C. Adimurthi, M. Ramaswamy. An improved Hardy-Sobolev inequality and its applications. Proc. AMS, 2001, 130(2): 489- 505. |
[10] | D. DeFigueredo. Lectures on the Ekeland variational principle with applications and Detours. TATA Institute, New York: Springer-Verlog, 1989. |
[11] | A. Szulkin. Ljusternik-Schnirelmann theory on C1-manifolds. Ann. Inst. H. Poincaré, Anal. Non Linéaire, 1988, 5(2): 119-139. |
[12] | M. Cuesta, D. Defigueredo, and J. P. Gossez. The beginning of Fu?ik spectrum for p-Laplacean. Journal of Differential Equations, 2001, 2001(33): 1-9. |