|
Pure Mathematics 2012
含权双调和椭圆型问题的特征值不等式
|
Abstract:
本文主要讨论了一类含权的双调和椭圆型Dirichlet边值问题的第一和第二特征值之间的关系,通过一些变分技巧得到了相关的不等式,并在低维数空间给出了一些估计。
In this paper, we study the relation between the first and the second eigenvalue of a weighted biharmonic elliptic problem with Dirichlet boundary. By some variational technique we obtain the corresponding inequality, and some evaluations are put forward in low dimension space.
[1] | L. E. Payne, G. Polya and H. F. Weinberger. On the ratio of consecutive eigenvalues. Journal of Math and Physics, 1956, 35: 289-298. |
[2] | G. N. Hile, M. H. Protter. Inequalities for eigenvalues of the Laplacian. Indiana University Mathematic Journal, 1980, 29: 523-538. |
[3] | H. C. Yang. Estimates of the difference between consecutive eigenvalues. International Centre for Theoretical Physics, 1995, (3): 47-63. |
[4] | E. M. Harrell II, J. Stubbe. On trace identities and universal eigenvalue estimates for some partial differential operators. Transactions of the American Mathematical Society, 1997, 349(5): 1797-1809. |
[5] | G. N. Hile, R. Z. Yeh. Inequalities for eigenvalues of the Biharmonic operator. Pacific Journal of Mathematics, 1984, 112(1): 115-133. |
[6] | M. S. Ashbaugh, L. Hermi. A unified approach to universal inequalities for eigenvalues of elliptic operators. Pacific Journal of Mathematics, 2004, 217(2): 201-219. |
[7] | P. Li. Eigenvalue estimates on homogeneous manifolds. Comment Mathematic Helvetic, 1980, 55(1): 347-363. |
[8] | 屈长征, 崔尚斌. 复Monge-Ampere方程的特征值问题[J]. 纯粹数学与应用数学, 1995, 11(2): 37-40. |