|
Material Sciences 2013
新型基因治疗载体——纳米羟基磷灰石
|
Abstract:
[1] | A. P. Cotrim, B. J. Baum. Gene therapy: Some history, appli- cations, problems, and prospects. Toxicologic Pathology, 2008, 36(1): 97-103. |
[2] | Y. Hattori. Development of non-viral vector for cancer gene therapy. Yakugaku Zasshi, 2010, 130(7): 917-923. |
[3] | J. W. B. Bainbridge, A. J. Smith, S. S. Barker, S. Robbie, R. Henderson, K. Balaggan, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. The New England Journal of Medicine, 2008, 358(21): 2231-2239. |
[4] | M. L. Edelstein, M. R. Abedi and J. Wixon. Gene therapy clini- cal trials worldwide to 2007—An update. The Journal of Gene Medicine, 2007, 9(10): 833-842. |
[5] | S. Daya, K. I. Berns. Gene therapy using adeno-associated virus vectors. Clinical Microbiology Reviews, 2008, 21(4): 583-593. |
[6] | H. Herweijer, J. A. Wolff. Gene therapy progress and prospects: hydrodynamic gene delivery. Gene Therapy, 2007, 14(2): 99- 107. |
[7] | A. Mohyeldin, E. A. Chiocca. Gene and viral therapy for gliob- lastoma: A review of clinical trials and future directions. Cancer Journal, 2012, 18(1): 82-88. |
[8] | C. Strambio-De-Castillia, M. Niepel and M. P. Rout. The nuclear pore complex: Bridging nuclear transport and gene regulation. Nature Reviews. Molecular Cell Biology, 2010, 11(7): 490-501. |
[9] | L. E. Vinge, P. W. Raake and W. J. Koch. Gene therapy in heart failure. Circulation Research, 2008, 102(12): 1458-1470. |
[10] | M. S. Al-Dosari, X. Gao. Nonviral gene delivery: Principle, limitations, and recent progress. AAPS Journal, 2009, 11(4): 671- 681. |
[11] | M. Donkuru, I. Badea, S. Wettig, R. Verrall, M. Elsabahy and M. Foldvari. Advancing nonviral gene delivery: Lipid- and surface-tant-based nanoparticle design strategies. Nanomedicine, 2010, 5(7): 1103-1127. |
[12] | K. Gao, L. Huang. Nonviral methods for siRNA delivery. Mo- lecular Pharmaceutics, 2009, 6(3): 651-658. |
[13] | X. Kong, S. Xu, X. Wang, F. Cui and J. Yao. Calcium carbonate microparticles used as a gene vector for delivering p53 gene into cancer cells. Journal of Biomedical Materials Research. Part A, 2012, 100(9): 2312-2318. |
[14] | I. Roy, M. K. Stachowiak and E. J. Bergey. Nonviral gene trans- fection nanoparticles: Function and applications in the brain. Nanomedicine: Nanotechnology, Biology, and Medicine, 2008, 4(2): 89-97. |
[15] | N. G. Abraham, A. Asija, G. Drummond and S. Peterson. Heme oxygenase-1 gene therapy: Recent advances and therapeutic ap- plications. Current Gene Therapy, 2007, 7(2): 89-108. |
[16] | S. M. Conley, X. Cai and M. I. Naash. Nonviral ocular gene the- rapy: Assessment and future directions. Current Opinion in Mo- lecular Therapeutics, 2008, 10(5): 456-463. |
[17] | H. Urch, M. Vallet-Regi, L. Ruiz, J. M. Gonzalez-Calbet and M. Epple. Calcium phosphate nanoparticles with adjustable disper- sability and crystallinity. Journal of Materials Chemistry, 2009, 19(15): 2166-2171. |
[18] | V. Uskokovic, D. P. Uskokovic. Nanosized hydroxyapatite and other calcium phosphates: Chemistry of formation and applica- tion as drug and gene delivery agents. Journal of Biomedical Materials Research. Part B, 2011, 96(1): 152-191. |
[19] | R. Z. LeGeros. Calcium phosphate-based osteoinductive materi- als. Chemical Reviews, 2008, 108(11): 4742-4753. |
[20] | G. M. Cunniffe, F. J. O’Brien, S. Partap, T. J. Levingstone, K. T. Stanton and G. R. Dickson. The synthesis and characterization of nanophase hydroxyapatite using a novel dispersant-aided pre- cipitation method. Journal of Biomedical Materials Research. Part A, 2010, 95(4): 1142-1149. |
[21] | E. T. Castellana, P. S. Cremer. Solid supported lipid bilayers: From biophysical studies to sensor design. Surface Science, 2006, 61(10): 429-444. |
[22] | 李新新, 侯森, 冯喜增. 无机纳米粒子作为基因载体的研究进展. 生命科学, 2008, 20(3): 402-407. |
[23] | V. Sokolova, M. Epple. Inorganic nanoparticles as carriers of nucleic acids into cells. Angewandte Chemie, International Edi- tion, 2008, 47(8): 1382-1395. |
[24] | A. Kovtun, R. Heumann and M. Epple. Calcium phosphate na- noparticles for the transfection of cells. Bio-Medical Materials and Engineering, 2009, 19(2-3): 241-247. |
[25] | M. Brisson, W. C. Tseng, C. Almonte, S. Watkins and L. Huang. Subcellular trafficking of the cytoplasmic expression system. Human Gene Therapy, 1999, 10(16): 2601-2613. |
[26] | A. H. Faraji, P. Wipf. Nanoparticles in cellular drug delivery. Bioorganic & Medicinal Chemisty, 2009, 17(8): 2950-2962. |
[27] | R. B. Huang, S. Mocherla, M. J. Heslinga, P. Charoenphol and O. Eniola-Adefeso. Dynamic and cellular interactions of nanoparti- cles in vascular-targeted drug delivery (review). Molecular Membrane Biology, 2010, 27(7): 312-327. |
[28] | S. Bisht, G. Bhakta, S. Mitra and A. Maitra. pDNA loaded cal- cium phosphate nanoparticles: Highly efficient non-viral vector for gene delivery. International Journal of Pharmaceutics, 2005, 288(1): 157-168. |
[29] | S. Elangovan, S. Jain, P. C. Tsai, H. C. Margolis and M. Amiji. Nano-sized calcium phosphate particles for periodontal gene the- rapy. Journal of Periodontology, 2012, 84(1): 117-125. |
[30] | B. D. Hahn, J. M. Lee, D. S. Park, J. J. Choi, J. Ryu W. H. Yoon, et al. Enhanced bioactivity and biocompatibility of nanostruc- tured hydroxyapatite coating by hydrothermal annealing. Thin Solid Films, 2011, 519(22): 8085-8090. |
[31] | G. Li, L. Ye, J. Pan, M. Long, Z. Zhao, H. Yang, et al. Antitu- moural hydroxyapatite nanoparticles-mediated hepatoma-tar- geted trans-arterial embolization gene therapy: In vitro and in vivo studies. Liver International, 2012, 32(6): 998-1007. |
[32] | B. Muller. Tailoring biocompatibility: Benefitting patients. Ma- terials Today, 2010, 13(4): 58. |
[33] | M. Motskin, D. M. Wright, K. Muller, N. Kyle, T. G. Gard, A. E. Porter, et al. Hydroxyapatite nano and microparticles: Correla- tion of particle properties with cytotoxicity and biostability. Biomaterials, 2009, 30(19): 3307-3317. |
[34] | L. A. Chen, J. M. Mccrate, J. C. M. Lee and H. Li. The role of surface charge on the uptake and biocompatibility of hydroxya- patite nanoparticles with osteoblast cells. Nanotechnology, 2011, 22(10): Article ID: 105708. |
[35] | M. Kester, Y. Heakal, T. Fox, A. Sharma, G. P. Robertson, T. T. Morgan, et al. Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Letters, 2008, 8(12): 4116-4121. |
[36] | Q. Zhang, D. Zhao, X. Z. Zhang, S. X. Cheng and R. X. Zhuo. Calcium phosphate/DNA co-precipitates encapsulated fast-deg- rading polymer films for substrate-mediated gene delivery. Jour- nal of Biomedical Materials Research. Part B, 2009, 91(1): 172-180. |
[37] | J. Li, Y. C. Chen, Y. C. Tseng, S. Mozumdar and L. Huang. Biodegradable calcium phosphate nanoparticle with lipid coat- ing for systemic siRNA delivery. Journal of Controlled Release, 2010, 142(3): 416-421. |
[38] | E. H. Chowdhury, A. Maruyama, A. Kano, M. Nagaoka, M. Ko- taka, S. Hirose, et al. pH-sensing nano-crystals of carbonate apa- tite: Effects on intracellular delivery and release of DNA for ef- ficient expression into mammalian cells. Gene, 2006, 376(1): 87-94. |
[39] | Z. P. Xu, Q. H. Zeng, G. Q. Lu and A. B. Yu. Inorganic nanopar- ticles as carriers for efficient cellular delivery. Chemical Engi- neering Science, 2006, 61(3): 1027-1040. |
[40] | I. Nadra, A. R. Boccaccini, P. Philippidis, L. C. Whelan, G. M. McCarthy, D. O. Haskard, et al. Effect of particle size on hy- droxyapatite crystal-induced tumor necrosis factor alpha secre- tion by macrophages. Atherosclerosis, 2008, 196(1): 98-105. |
[41] | S. E. A. Gratton, P. A. Ropp, P. D. Pohlhaus, J. C. Luft, V. J. Ma- dden, M. E. Napier, et al. The effect of particle design on cellu- lar internalization pathways. Proceedings of the National Aca- demy of Sciences of the USA, 2008, 105(33): 11613-11618. |
[42] | B. D. Chithrani, W. C. W. Chan. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Letters, 2007, 7(6): 1542- 1550. |
[43] | X. L. Huang, X. Teng, D. Chen, F. Q. Tang and J. Q. He. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials, 2010, 31(3): 438-448. |
[44] | J. M. Oh, S. J. Choi, G. E. Lee, S. H. Han and J. H. Choy. Inor- ganic drug-delivery nanovehicle conjugated with cancer-cell- specific ligand. Advanced Functional Materials, 2009, 19(10): 1617-1624. |
[45] | G. Zuber, L. Zammut-Italiano, E. Dauty and J. P. Behr. Targeted gene delivery to cancer cells: Directed assembly of nanometric DNA particles coated with folic acid. Angewandte Chemie In- ternational Edition, 2003, 42(23): 2666-2669. |
[46] | T. N. Do, W. H. Lee, C. Y. Loo, A. V. Zavgorodniy and R. Roha- nizadeh. Hydroxyapatite nanoparticles as vectors for gene deliv- ery. Therapeutic Delivery, 2012, 3(5): 623-632. |
[47] | D. Olton, J. H. Li, M. E. Wilson, T. Rogers, J. Close, L. Huang, et al. Nanostructured calcium phosphates (NanoCaPs) for non- viral gene delivery: Influence of the synthesis parameters on transfection efficiency. Biomaterials, 2007, 28(6): 1267-1279. |
[48] | G. Zuo, Y. Wan and Y. Zhang. Preparation and characterization of a novel laminated magnetic hydroxyapatite for application on gene delivery. Materials Letters, 2012, 68: 225-227. |
[49] | B. Sumer, J. M. Gao. Theranostic nanomedicine for cancer. Na- nomedicine, 2008, 3(2): 137-140. |
[50] | F. Ye, H. Guo and H. Zhang. Biomimetic synthesis of oriented hydroxyapatite mediated by nonionic surfactants. Nanotechnol- ogy, 2008, 19(24): Article ID: 245605. |