|
Neural-Network-Based Smart Sensor Framework Operating in a Harsh EnvironmentDOI: 10.1155/asp.2005.558 Keywords: intelligent sensors , artificial neural networks , autocompensation. Abstract: We present an artificial neural-network- (NN-) based smart interface framework for sensors operating in harsh environments. The NN-based sensor can automatically compensate for the nonlinear response characteristics and its nonlinear dependency on the environmental parameters, with high accuracy. To show the potential of the proposed NN-based framework, we provide results of a smart capacitive pressure sensor (CPS) operating in a wide temperature range of 0 to 250 ° ¢ € ‰C. Through simulated experiments, we have shown that the NN-based CPS model is capable of providing pressure readout with a maximum full-scale (FS) error of only ±1.0% over this temperature range. A novel scheme for estimating the ambient temperature from the sensor characteristics itself is proposed. For this purpose, a second NN is utilized to estimate the ambient temperature accurately from the knowledge of the offset capacitance of the CPS. A microcontroller-unit- (MCU-) based implementation scheme is also provided.
|