In this paper, we propose a new approach for the detection of OFDMA and other wideband signals in the context of centralized cooperative spectrum sensing for cognitive radio (CR) applications. The approach is based on the eigenvalues of the received signal covariance matrix whose samples are in the frequency domain. Soft combining of the eigenvalues at the fusion center is the main novelty. This combining strategy is applied to variants of four test statistics for binary hypothesis test, namely: the eigenvalue-based generalized likelihood ratio test (GLRT), the maximum-minimum eigenvalue detection (MMED), the maximum eigenvalue detection (MED) and the energy detection (ED). It is shown that the eigenvalue fusion can outperform schemes based on decision fusion and sample fusion. A tradeoff is also established between complexity and volume of data sent to the fusion center in all combining strategies.
References
[1]
Mitola, J., III; Maguire, G.Q., Jr. Cognitive radio: Making software radios more personal. IEEE Pers. Commun. 1999, 6, 13–18, doi:10.1109/98.788210.
[2]
Akyildiz, I.F.; Lo, B.F.; Balakrishnan, R. Cooperative spectrum sensing in cognitive radio networks: A survey. Phys. Commun. 2011, 4, 40–62, doi:10.1016/j.phycom.2010.12.003.
[3]
Yang, S.C. OFDMA System Analysis and Design; Artech House: London, UK, 2010.
[4]
Srikanth, S.; Kumaran, V.; Manikandan, C.; Murugesa Pandian, P.A. Orthogonal frequency division multiple access: Is it the multiple access system of the future? Whitepaper; AU-KBC Research Center: Anna University, 2008. Available online: http://www.au-kbc.org/comm/comm resource.htm (accessed on 2 July 2012).
[5]
Urkowitz, H. Energy detection of unknown deterministic signals. Proc. IEEE 1967, 55, 523–531, doi:10.1109/PROC.1967.5573.
[6]
Digham, F.F.; Alouini, M.S.; Simon, M.K. On the energy detection of unknown signals over fading channels. IEEE Trans. Commun. 2007, 55, 21–24, doi:10.1109/TCOMM.2006.887483.
[7]
Yucek, T.; Arslan, H. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutor. 2009, 11, 116–130, doi:10.1109/SURV.2009.090109.
[8]
Gardner, W.A. Signal interception: A unifying theoretical framework for feature detection. IEEE Trans. Commun. 1988, 36, 897–906, doi:10.1109/26.3769.
[9]
Quan, Z.; Cui, S.; Sayed, A.H.; Poor, H.V. Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Trans. Signal Process. 2009, 57, 1128–1140, doi:10.1109/TSP.2008.2008540.
[10]
Paysarvi-Hoseini, P.; Beaulieu, N.C. Optimal wideband spectrum sensing framework for cognitive radio systems. IEEE Trans. Signal Process. 2011, 59, 1170–1182, doi:10.1109/TSP.2010.2096220.
[11]
Tian, Z.; Giannakis, G.B. A Wavelet Approach to Wideband Spectrum Sensing for Cognitive Radios. In Proceedings of 1st International Conference on the Cognitive Radio Oriented Wireless Networks and Communications, Mykonos Island, Greece, 8-10 June 2006; pp. 1–5.
[12]
Qiu, R.; Guo, N.; Li, H.; Wu, Z.; Chakravarthy, V.; Song, Y.; Hu, Z.; Zhang, P.; Chen, Z. A unified multi-functional dynamic spectrum access framework: Tutorial, theory and Multi-GHz wideband testbed. Sensors 2009, 9, 6530–6603, doi:10.3390/s90806530.
[13]
Tian, Z.; Giannakis, G.B. Compressed Sensing for Wideband Cognitive Radios. In Proceedings of IEEE International Conference on the Acoustics, Speech and Signal Processing, ICASSP 2007, Honolulu, HI, USA, 15-20 April 2007; Volume 4,pp. IV; 4, pp. IV:1357–IV:1360.
[14]
Nadler, B.; Penna, F.; Garello, R. Performance of Eigenvalue-Based Signal Detectors with Known and Unknown Noise Level. In Proceedings of 2011 IEEE International Conference on the Communications, (ICC), Kyoto, Japan, 5-9 June 2011; pp. 1–5.
[15]
Kortun, A.; Ratnarajah, T.; Sellathurai, M.; Zhong, C.; Papadias, C.B. On the performance of eigenvalue-based cooperative spectrum sensing for cognitive radio. IEEE J. Sel. Top. Signal Process. 2011, 5, 49–55, doi:10.1109/JSTSP.2010.2066957.
[16]
Xu, S.; Shang, Y.; Wang, H. Eigenvalues Based Spectrum Sensing Against Untrusted Users in Cognitive Radio Networks. In Proceedings of 4th International Conference on the Cognitive Radio Oriented Wireless Networks and Communications, CROWNCOM ’09, Hannover, Germany, 22-24 June 2009; pp. 1–6.
Lin, M.; Vinod, A.P.; See, C.M.S. A new flexible filter bank for low complexity spectrum sensing in cognitive radios. J. Signal Process. Syst. 2011, 62, 205–215, doi:10.1007/s11265-008-0329-9.
[19]
Liu, X. A survey on clustering routing protocols in wireless sensor networks. Sensors 2012, 12, 11113–11153, doi:10.3390/s120811113.
[20]
Silva, C.R.N.; Guimar?es, D.A.; Souza, R.A.A. Original title in Portuguese: Sensoriamento Espectral Baseado em Autovalores para Sinais em Banda Larga. In Proceedings of the XXX Brazilian Telecommunications Symposium, SBrT’12, Brasília, Brazil, 13-16 September 2012.
[21]
Kritchman, S.; Nadler, B. Non-parametric detection of the number of signals: Hypothesis testing and random matrix theory. IEEE Trans. Signal Process. 2009, 57, 3930–3941, doi:10.1109/TSP.2009.2022897.
[22]
Zhang, R.; Lim, T.; Liang, Y.C.; Zeng, Y. Multi-antenna based spectrum sensing for cognitive radios: A GLRT approach. IEEE Trans. Commun. 2010, 58, 84–88, doi:10.1109/TCOMM.2010.01.080158.
[23]
Lim, T.J.; Zhang, R.; Liang, Y.C.; Zeng, Y. GLRT-Based Spectrum Sensing for Cognitive Radio. In Proceedings of the IEEE Global Telecommunications Conference, IEEE GLOBECOM 2008, New Orleans, LA, USA, 30 November-4 December 2008; pp. 1–5.
[24]
Varshney, P.; Burrus, C. Distributed Detection and Data Fusion; Signal processing and digital filtering, Springer: Berlin/Heidelberg, Germany, 1997.
[25]
Guimar?es, D.A.; Souza, R.A.A. Implementation-oriented model for centralized data-fusion cooperative spectrum sensing. IEEE Commun. Lett. 2012, 16, 1804–1807, doi:10.1109/LCOMM.2012.092112.121614.
[26]
IEEE Standard for Information Technology-Telecommunications and information exchange between systems Wireless Regional Area Networks (WRAN)-Specific requirements Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands. IEEE Standard 802.22-2011. 2011, 1–680.
[27]
Michailow, N.; Datta, R.; Krone, S.; Lentmaier, M.; Fettweis, G. Generalized Frequency Division Multiplexing: A Flexible Multi-Carrier Modulation Scheme for 5th Generation Cellular Networks. In Proceedings of the German Microwave Conference (GeMiC’12), Ilmenau, Germany, 12-14 March 2012.
[28]
Datta, R.; Michailow, N.; Krone, S.; Lentmaier, M.; Fettweis, G. Generalized Frequency Division Multiplexing in Cognitive Radio. In Proceedings of the 20th European Signal Processing Conference (EUSIPCO’12), Bucharest, Romania, 27-31 August 2012.