Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities.
References
[1]
Kushalnagar, N.; Montenegro, G.; Schumacher, C.P.P. IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, assumptions, problem statement, and goals. 2007, 1–2, IETF RFC 4919.
[2]
Montenegro, G.; Kushalnagar, N.; Hui, J.; Culler, D. Transmission of IPv6 Packets over IEEE 802.15.4 Networks. 2007, 1–30, IETF RFC 4944.
[3]
Routing Over Low power and Lossy networks (roll). Available online: http://datatracker.ietf.org/wg/roll/ (accessed on 3 October 2012).
[4]
ZigBee Alliance Plans Further Integration of Internet Protocol Standards. Available online: https://docs.zigbee.org/zigbee-docs/dcn/09-5003.pdf (accessed on 3 October 2012).
[5]
Constrained RESTful Environments (core). Available online: http://datatracker.ietf.org/wg/core/ (accessed on 28 December 2012).
[6]
IPv6 over Low power WPAN (6lowpan). Available online: http://datatracker.ietf.org/wg/6lowpan/ (accessed on 28 December 2012).
[7]
Constrained RESTful Environments (core). Available online: http://datatracker.ietf.org/wg/core/ (accessed on 28 December 2012).
[8]
IEEE 802.15.4. Available online: http://www.ieee802.org/15/pub/TG4.html (accessed on 28 December 2012).
[9]
IEEE Standard for Local and Metropolitan Area Networks—Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). 5, September, 2011, 1–314.
[10]
ZigBee Alliance. Available online: http://www.zigbee.org/ (accessed on 28 December 2012).
[11]
HART Communication Protocol and Foundation. Available online: http://www.hartcomm.org/ (accessed on 28 December 2012).
[12]
MiWi Development Environment. Available online: http://www.microchip.com/miwi (accessed on 28 December 2012).
[13]
ISA100 Wireless Systems for Automation. Available online: http://www.isa.org/isa100 (accessed on 28 December 2012).
[14]
Vasseur, J.-P.; Dunkels, A. Interconnecting Smart Objects with IP: The Next Internet; Morgan Kaufmann: Amsterdam, Holand, 2010.
[15]
Montenegro, G.; Kushalnagar, N.; Hui, J.W.; Culler, D.E. Transmission of IPv6 Packets over IEEE 802.15.4 Networks. IETF RFC 4944, 2007.
[16]
Hui, J.; Thubert, P. Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks. IETF RFC 6282, 2011, 1–24.
[17]
Chakrabarti, S.; Nordmark, E.; Bormann, C. Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs); Shelby, Z., Ed.; IETF RFC 6775; 2012; pp. 1–55.
[18]
Kim, E.; Kaspar, D. Design and Application Spaces for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs). IETF RFC 6568, 2012, 1–28.
[19]
Gomez, C.; Kim, E.; Kaspar, D.; Bormann, C. Problem Statement and Requirements for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Routing. IETF RFC 6606, 2007.
[20]
Nieminen, J.; Savolainen, T.; Isomaki, M.; Shelby, Z.; Gomez, C. Transmission of IPv6 Packets over BLUETOOTH Low Energydraft-ietf-6lowpan-btle-11. 2012.
[21]
IPv6 Over Low power WPAN (6LoWPAN) Charter. Available online: http://datatracker.ietf.org/wg/6lowpan/charter/ (accessed on 13 December 2012).
[22]
Hui, J.; Culler, D.; Chakrabarti, S. 6LoWPAN: Incorporating IEEE 802.15.4 into the IP architecture 2009. 17.
[23]
Mulligan, G. The 6LoWPAN Architecture. In Proceedings of the 4th Workshop on Embedded Networked Sensors, Cork, Ireland, 25–26 June 2007; ACM: New York, NY, USA, 2007; pp. 78–82.
[24]
Cody-Kenny, B.; Guerin, D.; Ennis, D.; Carbajo, R.S.; Huggard, M.; McGoldrick, C. Performance Evaluation of the 6LoWPAN Protocol on MICAz and TelosB Motes. In Proceedings of 4th ACM Workshop on Performance Monitoring and Measurement of Heterogeneous Wireless and Wired Networks, Tenerife, Canary Islands, Spain, 26 October 2009; ACM: New York, NY, USA, 2009; pp. 25–30.
[25]
Sulthana, M.R.; Bhuvaneswari, P.T.V.; Rama, N. Routing Protocols in 6LoWPAN: A Survey. Eur. J. Sci. Res. 2012, 85, 248–261.
[26]
Borman, C. 6LoWPAN Generic Compression of Headers and Header-like Payloadsdraft-bormann-6lowpan-ghc-05. 2012.
[27]
Sahara Project. Available online: http://sahara.tzi.org/ (accessed on 10 December 2012).
[28]
HOBNET project. Available online: http://www.hobnet-project.eu/ (accessed on 10 December 2012).
[29]
Outsmart: FP7 Framework Project. Available online: http://www.fi-ppp-outsmart.eu/en-uk/Pages/default.aspx (accessed on 10 December 2012).
[30]
Cassaniti, D. A Multihop 6LoWPAN Wireless Sensor Network for Waste Management Optimization. M.Sc. thesis, University of Padova, Padova, Italy, 2012.
[31]
Calipso Project. Available online: http://www.ict-calipso.eu/ (accessed on 10 December 2012).
[32]
Khoshdelniat, R. LoWPAN Applications and Internet of Things. Available online: http://www.apan.net/meetings/Hanoi2010/Session/SensNet.php (accessed on 10 December 2012).
[33]
Schoenwaelder, J.; Sehgal, A.; Tsou, T.; Zhou, C. Definition of Managed Objects for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)draft-schoenw-6lowpan-mib-01. 2012.
[34]
Bormann, C. Guidance for Light-Weight Implementations of the Internet Protocol Suitedraft-ietf-lwig-guidance-02. 2012.
[35]
Altmann, V.; Skodzik, J.; Golatowski, F.; Timmermann, D. Investigation of the Use of Embedded Web Services in Smart Metering Applications. In Proceedigns of the 38th Annual Conference of the IEEE Industrial Electronics Society (IECON2012), Montréal, PQ, Canada, 25–28 October 2012.
[36]
Routing over Low power and Lossy networks (roll)—Charter. Available online: http://datatracker.ietf.org/wg/roll/charter/ (accessed on 27 December 2012).
[37]
Pister, K.; Thubert, P.; Phinney, T. Industrial Routing Requirements in Low-Power and Lossy Networks. IETF RFC 5673, 2009, 1–27.
[38]
Buron, J.; Brandt, A.; Porcu, G. Home Automation Routing Requirements in Low-Power and Lossy Networks. IETF RFC 5826, 2010, 1–17.
[39]
Martocci, J.; Mil, P. De; Riou, N.; Vermeylen, W. Building Automation Routing Requirements in Low-Power and Lossy Networks. IETF RFC 5867, 2010, 1–26.
[40]
Watteyne, T.; Berkeley, U.C.; Winter, T.; Barthel, D. Routing Requirements for Urban Low-Power and Lossy Networks. IETF RFC 5548, 2009, 1–21.
Vasseur, J.; Kim, M.; Pister, K.; Dejean, N.; Barthel, D. Routing metrics used for path calculation in low power and lossy networks. IETF RFC 6551, 2011, 1–30.
[43]
Thubert, P. Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL). IETF RFC 6552, 2012, 1–14.
[44]
Gnawali, O.; Levis, P. The Minimum Rank with Hysteresis Objective Function. IETF RFC 6719, 2012, 1–13.
[45]
Clausen, T.; Gnawali, O.; Ko, J.; Hui, J. The Trickle Algorithm. IETF RFC 6206, 2011, 1–13.
[46]
Conta, A.; Gupta, M. Internet control message protocol (icmpv6) for the internet protocol version 6 (ipv6) specification. IETF RFC 4443, 2006, 1–24.
[47]
TinyRPL—TinyOS Documentation Wiki. Available online: http://docs.tinyos.net/tinywiki/index.php/TinyRPL (accessed on 27 December 2012).
[48]
Tsiftes, N.; Eriksson, J.; Dunkels, A. Low-power Wireless IPv6 Routing with ContikiRPL. In Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN ’10, Stockholm, Sweden, 12–16 April 2010; ACM Press: : New York, NY, USA, 2010; p. 406.
[49]
Berkeley’s OpenWSN Project. Available online: http://openwsn.berkeley.edu/ (accessed on 28 December 2012).
[50]
Nano-RK. Available online: http://www.nanork.org/projects/nanork (accessed on 28 December 2012).
[51]
Jeong, J. Design and Implementation of Low Power Wireless IPv6 Routing for NanoQplus. In Proceedings of the 13th International Conference on Advanced Communication Technology (ICACT), Daejeon, South Korea, 13–16 February 2011; pp. 966–971.
[52]
Pavkovi?, B.; Theoleyre, F.; Duda, A. Multipath Opportunistic RPL Routing over IEEE 802.15.4. In Proceedings of the 14th ACM International Conference on ModelingAnalysis and Simulation of Wireless and Mobile Systems, MSWiM ’11, Miami Beach, FL, USA, 31 October 2011; ACM Press: New York, NY, USA, 2011; p. 179.
[53]
Saad, L.; Chauvenet, C.; Tourancheau, B. Simulation of the RPL Routing Protocol for IPv6 Sensor Networks: Two Cases Studies. In Proceedings of the International Conference on Sensor Technologies and Applications, Nice, France, 21–27 August 2011; Volume 2011.
[54]
Contiki: The Open Source Operating System for the Internet of Things. Available online: http://www.contiki-os.org/ (accessed on 20 December 2012).
[55]
Bartolozzi, L.; Pecorella, T.; Fantacci, R. ns-3 RPL module: IPv6 routing protocol for low power and lossy networks. In Proceedings of the 5th International ICST Conference on Simulation Tools and Techniques (SIMUTOOLS), Desenzano, Italy, 19–23 March 2012; pp. 359–366.
[56]
Hammerseth, S.K. Implementing RPL in a Mobile and Fixed Wireless Sensor Network with OMNeT++. M.Sc. Thesis, University of Oslo, Oslo, Norway, 29 November 2012.
[57]
rpl-jsim-platform—Implementation of RPL functionality in JSim platform—Google Project Hosting. Available online: http://code.google.com/p/rpl-jsim-platform/ (accessed on on 20 December 2012).
[58]
Gnawali, O.; Levis, P. Recommendations for Efficient Implementation of RPLdraft-gnawali-roll-rpl-recommendations-04. 2012.
[59]
Tripathi, J.; Oliveira, J.; Vasseur, J.-P. Performance Evaluation of the Routing Protocol for Low-Power and Lossy Networks (RPL). IETF RFC 6687, 2012, 1–26.
[60]
Ko, J.; Eriksson, J.; Tsiftes, N.; Dawson-haggerty, S.; Terzis, A.; Dunkels, A.; Culler, D. ContikiRPL and TinyRPL: Happy Together. In Proceedings of the workshop on Extending the Internet to Low power and Lossy Networks (IP+SN), Chicago, IL, USA, 11 April 2011.
[61]
Clausen, T. H.; Herberg, U.; Philipp, M. A Critical Evaluation of the IPv6 Routing Protocol for Low Power and Lossy Networks(RPL). In Proceedings of the 2011 IEEE 7th International Conference on Wireless and Mobile ComputingNetworking and Communications (WiMob), Wuhan, China, 23–25 September 2011; pp. 365–372.
[62]
Xie, W.; Goyal, M.; Hosseini, H.; Martocci, J.; Bashir, Y.; Baccelli, E.; Durresi, A. A Performance Analysis of Point-to-Point Routing along a Directed Acyclic Graph in Low Power and Lossy Networks. In Proceedings of the 13th International Conference on Network-Based Information Systems (NBiS), Takayama, Japan, 14–16 September 2010; pp. 111–116.
[63]
Baccelli, E.; Philipp, M.; Goyal, M. The P2P-RPL Routing Protocol for IPv6 Sensor Networks: Testbed Experiments. In Proceedings of the 19th International Conference on SoftwareTelecommunications and Computer Networks (SoftCOM), Split, Croatia, 15–17 September 2011; pp. 1–6.
[64]
Hui, J.; Kelsey, R. Multicast Protocol for Low power and Lossy Networks (MPL)draft-ietf-roll-trickle-mcast-02. 2012, 1–24.
[65]
Oikonomou, G.; Phillips, I. Stateless Multicast Forwarding with RPL in 6LowPAN Sensor Networks. In Proceedings of the 2012 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom), City, Country, 19–23 March 2012; pp. 272–277.
[66]
Dawans, S.; Duquennoy, S.; Bonaventure, O. On Link Estimation in Dense RPL Deployments. In Proceedings of the International Workshop on Practical Issues in Building Sensor Network Applications (IEEE SenseApp 2012), Clearwater, FL, USA, 22–25 October 2012; pp. 956–959.
[67]
Goyal, M.; Baccelli, E.; Brandt, A.; Martocci, J. A Mechanism to Measure the Routing Metrics along a Point-to-point Route in a Low Power and Lossy Networkdraft-ietf-roll-p2p-measurement-07. 2013, 1–26.
[68]
Goyal, M.; Baccelli, E.; Philipp, M.; Brandt, A.; Martocci, J. Reactive Discovery of Point-to-Point Routes in Low Power and Lossy Networksdraft-ietf-roll-p2p-rpl-15. 2012, 1–36.
[69]
Herberg, U.; Clausen, T. A Comparative Performance Study of the Routing Protocols LOAD and RPL with Bi-directional Traffic in Low-power and Lossy Networks (LLN). In Proceedings of the 8th ACM Symposium on Performance Evaluation of Wireless ad Hoc, Sensor and Ubiquitous Networks (PE-WASUN), Miami Beach, FL, USA, 31 October–4 November 2011; ACM Press: New York, NY, USA, 2011; pp. 73–80.
[70]
Ko, J.; Gnawali, O.; Culler, D.; Terzis, A. Evaluating the Performance of RPL and 6LoWPAN in TinyOS. In Proceedings of the Workshop on Extending the Internet to Low power and Lossy Networks (IP+SN), Chicago, IL, USA, 11 April 2011.
[71]
Accettura, N.; Grieco, L.A.; Boggia, G.; Camarda, P. Performance analysis of the RPL Routing Protocol. In Proceedings of IEEE International Conference on Mechatronics, Istanbul, Turkey, 13–15 April 2011; pp. 767–772.
[72]
Bressan, N.; Bazzaco, L.; Bui, N.; Casari, P.; Vangelista, L.; Zorzi, M. The Deployment of a Smart Monitoring System Using Wireless Sensor and Actuator Networks. In Proceedings of the First IEEE International Conference on Smart Grid Communications (SMARTGRIDCOMM), Gaithersburg, Maryland, USA, 4–6 October 2010; pp. 49–54.
[73]
Chen, Y.; Chanet, J.P.; Hou, K.M. RPL Routing Protocol a case study: Precision agriculture. In Proceedings of the First China-France Workshop on Future Computing Technology (CF-WoFUCT 2012), Harbin, China, 16–17 February 2012.
[74]
Becker, M.; P?tsch, T.; Kuladinithi, K.; G?rg, C. Deployment of CoAP in Transport Logistics. In Proceedings of 36th IEEE Conference on Local Computer Networks (LCN), Bonn, Germany, 4–7 October 2011; pp. 1–3.
[75]
Guo, J.; Orlik, P.; Bhatti, G. Loop Free DODAG Local Repairdraft-guo-roll-loop-free-dodag-repair-00. 2012, 1–17.
Ko, J.; Jeong, J.; Park, J.; Jun, J.; Kim, N. RPL Routing Pathology In a Network With a Mix of Nodes Operating in Storing and Non-Storing Modesdraft-ko-roll-mix-network-pathology-01. 2012, 1–9.
[78]
Baryun, A. The Node Ability of Participation (NAP)draft-baryun-roll-nap-00. 2013, 1–9.
[79]
Goyal, M.; Barthel, D.; Baccelli, E. DIS Modificationsdraft-goyal-roll-dis-modifications-01. 2013, 1–11.
[80]
Hong, K.-S.; Choi, L. DAG-based multipath routing for mobile sensor networks. In Proceedings of the International Conference on ICT Convergence (ICTC), Seoul, Korea (South), 28–30 September 2011; pp. 261–266.
[81]
Lee, K.C.; Sudhaakar, R.; Ning, J.; Dai, L.; Addepalli, S.; Vasseur, J.P.; Gerla, M. A Comprehensive Evaluation of RPL under Mobility. Int. J. Veh. Technol. 2012, 2012, 1–10.
[82]
Carels, D.; Poorter, E.De; Moerman, I.; Demeester, P. Extending the IETF RPL routing protocol with mobility support. 2013. In press.
Colitti, W.; Steenhaut, K.; Caro, N. De Integrating Wireless Sensor Networks with the Web. In Proceedings of Workshop on Extending the Internet to Low power and Lossy Networks, Chicago, IL, USA, 11 April 2011.
[85]
Yazar, D.; Dunkels, A. Efficient Application Integration in IP-based Sensor Networks. In Proceedings of the First ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, BuildSys’09, Berkeley, USA, 4–6 November 2009; ACM Press: New York, NY, USA, 2009; p. 43.
[86]
Shelby, Z. Embedded web services. IEEE Wirel. Commun. 2010, 291, 76–81.
[87]
Shelby, Z. Constrained RESTful Environments (CoRE) Link Format. IETF RFC 6690, 2012.
[88]
Bormann, C.; Shelby, Z. Blockwise transfers in CoAPdraft-ietf-core-block-10. 2012.
[89]
Hartke, K. Observing Resources in CoAPdraft-ietf-core-observe-07. 2012.
Velez, L. IoT COAP#2 Interop Event Preliminary Report. Available online: http://svn.tools.ietf.org/svn/wg/core/Preliminary-Results-CoAP%232.pdf (accessed on 28 December 2012).
[92]
Lerche, C.; Hartke, K.; Kovatsch, M. Industry Adoption of the Internet of Things: A Constrained Application Protocol Survey. In Proceedings of the 7th International Workshop on Service Oriented Architectures in Converging Networked Environments (SOCNE 2012), Kraków, Poland, 17–21 September 2012.
[93]
Castellani, A.P.; Gheda, M.; Bui, N.; Rossi, M.; Zorzi, M. Web Services for the Internet of Things through CoAP and EXI. In Proceedings of IEEE International Conference on Communications Workshops (ICC), Kyoto, Japan, 5–9 June 2011; pp. 1–6.
[94]
Californium (Cf) CoAP framework in Java. Available online: http://people.inf.ethz.ch/mkovatsc/californium.php (accessed on 28 December 2012).
[95]
Copper (Cu) Add-ons for Firefox. Available online: https://addons.mozilla.org/en-us/firefox/addon/copper-270430/ (accessed on 28 December 2012).
[96]
Erbium (Er) REST Engine and CoAP Implementation for Contiki. Available online: http://people.inf.ethz.ch/mkovatsc/erbium.php (accessed on 28 December 2012).
[97]
Ishaq, I.; Hoebeke, J.; Rossey, J.; De Poorter, E.; Moerman, I.; Demeester, P. Facilitating Sensor Deployment,Discovery and Resource Access Using Embedded Web Services. In Proceedings of the Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Palermo, Italy, 4–6 July 2012; pp. 717–724.
[98]
evcoap. Available online: https://github.com/koanlogic/webthings/tree/master/bridge/sw/lib/evcoap (accessed on 29 December 2012).
[99]
NanoService. Sensinode Ltd. Available online: http://www.sensinode.com/EN/products/nanoservice.html (accessed on 22 December 2012).
[100]
libcoap: C-Implementation of CoAP. Available online: http://libcoap.sourceforge.net/ (accessed on 22 December 2012).
[101]
CoAP. TinyOS Documentation Wiki. Available online: http://docs.tinyos.net/tinywiki/index.php/CoAP (accessed on 22 December 2012).
[102]
coap.me. Available online: http://coap.me/ (accessed on 22 December 2012).
[103]
jcoap is a Java Library implementing the Constrained Application Protocol (CoAP)—Google Project Hosting. Available online: http://code.google.com/p/jcoap (accessed on 22 December 2012).
[104]
Constraint Application Protocol (CoAP) for ERIKA embedded OS. Available online: http://rtn.sssup.it/index.php/research-activities/middleware-of-things/middleware-of-things/11-research-activities/35-coaperika (accessed on 22 December 2012).
[105]
CoAPy: Constrained Application Protocol in Python—CoAPy v0.0.2 documentation. Available online: http://coapy.sourceforge.net/ (accessed on 29 December 2012).
[106]
ibr-alg/wiselib. GitHub. Available online: https://github.com/ibr-alg/wiselib (accessed on 22 December 2012).
[107]
Colitti, W.; Steenhaut, K.; De Caro, N.; Buta, B.; Dobrota, V. Evaluation of Constrained Application Protocol for Wireless Sensor Networks. In Proceedings of the 18th IEEE Workshop on Local & Metropolitan Area Networks (LANMAN), Chapel Hill, NC, USA, 13–14 October 2011; pp. 1–6.
[108]
Duquennoy, S.; Wirstr?m, N.; Tsiftes, N.; Dunkels, A. Leveraging IP for Sensor Network Deployment. In Proceedings of the workshop on Extending the Internet to Low power and Lossy Networks (IP+SN 2011), Chicago, IL, USA, 11 April 2011.
[109]
P?tsch, T. Performance of the Constrained Application Protocol for Wireless Sensor Networks. Available online: http://www.comnets.uni-bremen.de/itg/itgfg521/aktuelles/fg-workshop-29092011/ITG_HH_thomas_poetsch.pdf (accessed on 29 December 2012).
[110]
Kuladinithi, K.; Bergmann, O.; P?tsch, T.; Becker, M.; G?rg, C. Implementation of CoAP and its Application in Transport Logistics. In Extending the Internet to Low power and Lossy Networks’ (IP+SN 2011), Chicago, IL, USA, 11 April 2011.
[111]
Bormann, C. CoRE Roadmap and Implementation Guidedraft-bormann-core-roadmap-03. 2012.
[112]
Shelby, Z.; Krco, S.; Bormann, C. CoRE Resource Directorydraft-shelby-core-resource-directory-04. 2012.
[113]
Rahman, A.; Dijk, E. Group Communication for CoAPdraft-ietf-core-groupcomm-04. 2012.
[114]
Bormann, C. CoAP Simple Congestion Control/Advanceddraft-bormann-core-cocoa-00. 2012.
[115]
Gurtov, A.; Dashkova, E. Computing the Retransmission Timeout in COAP. Available online: http://www.etsi.org/plugtests/COAP2/Presentations/08_Computing_Retransmission_Timeout.pdf (accessed on 20 December 2012).
[116]
Greevenbosch, B. CoAP Minimum Request Intervaldraft-greevenbosch-core-minimum-request-interval-00. 2012.
Ketema, G.; Hoebeke, J.; Moerman, I.; Demeester, P. Efficiently observing Internet of Things Resources. In Proceedings of The IEEE International Conference on Cyber, Physical and Social Computing, Besan?on, France, 20–23 November 2012.
[119]
Vial, M. CoRE Mirror Serverdraft-vial-core-mirror-server-00. 2012.
[120]
Hoebeke, J.; Carles, D.; Ishaq, I.; Ketema, G.; Rossey, J.; De Poorter, E.; Moerman, I.; Demeester, P. Leveraging upon Standards to Build the Internet of Things. In Proceedings of the 19th IEEE Symposium on Communications and Vehicular Technology in the Benelux, Eindhoven, The Netherlands, 16 November 2012.
[121]
Rahman, A. Enhanced Sleepy Node Support for CoAPdraft-rahman-core-sleepy-01. 2012.
[122]
Application Layer Protocol Support for Sleeping Nodes in Constrained Networks. US Patent 20120151028.
[123]
Tschofenig, H. Report from the Smart Object Security Workshop. Available online: http://www.ietf.org/proceedings/83/slides/slides-83-saag-3.pdf (accessed on 18 December 2012).
[124]
Garcia-Morchon, O.; Keoh, S.; Kumar, S.; Hummen, R.; Struik, R. Security Considerations in the IP-based Internet of Thingsdraft-garcia-core-security-04. 2012.
[125]
Bergmann, O.; Gerdes, S.; Schafer, S.; Junge, F.; Bormann, C. Secure Bootstrapping of Nodes in a CoAP Network. In Proceedings of the IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Paris, France, 1 April 2012; pp. 220–225.
[126]
Hartke, K.; Bergmann, O. Datagram Transport Layer Security in Constrained Environmentsdraft-hartke-core-codtls-02. 2012.
[127]
Raza, S.; Trabalza, D.; Voigt, T. 6LoWPAN Compressed DTLS for CoAP. In IEEE 8th International Conference on Distributed Computing in Sensor Systems, Hangzhou, China, 16–18 May 2012; pp. 287–289.
[128]
Tschofenig, H.; Gilger, J. A Minimal (Datagram) Transport Layer Security Implementationdraft-tschofenig-lwig-tls-minimal-01. 2012.
[129]
Brachmann, M.; Garcia-Morchon, O.; Kirsche, M. Security for Practical CoAP Applications: Issues and Solution Approaches. In Proceedings of the 10th GI/ITG KuVS Fachgespraech Sensornetze (FGSN11), Paderborn, Germany, 15–16 September 2011.
[130]
Kivinen, T. Minimal IKEv2draft-kivinen-ipsecme-ikev2-minimal-01. 2012.
[131]
Castellani, A.; Loreto, S.; Rahman, A.; Fossati, T.; Dijk, E. Best Practices for HTTP-CoAP Mapping Implementationdraft-castellani-core-httSp-mapping-05. 2012.
[132]
Castellani, A.; Loreto, S.; Rahman, A.; Fossati, T.; Dijk, E. Best Practices for HTTP-CoAP Mapping Implementationdraft-castellani-core-advanced-http-mapping-00. 2012.
[133]
Becker, M.; Li, K.; Kuladinithi, K.; Poetsch, T. Transport of CoAP over SMS, USSD and GPRSdraft-becker-core-coap-sms-gprs-02. 2012.
[134]
Kovatsch, M.; Mayer, S.; Ostermaier, B. Moving Application Logic from the Firmware to the Cloud: Towards the Thin Server Architecture for the Internet of Things. In Proceedings of the Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Palermo, Italy, 4–6 July 2012; pp. 751–756.
[135]
Hans, S. Secure Environment management based on CoAP. In Proceedings of theETSI CoAP Workshop, Sophia Antipolis, France, 27–30 November 2012.
[136]
Castro, M.; Jara, A.J.; Skarmeta, A. Architecture for improving terrestrial logistics based on the Web of Things. Sensors 2012, 12, 6538–6575, doi:10.3390/s120506538.
[137]
M?enp??, J.; Bolonio, J.; Loreto, S. Using RELOAD and CoAP for wide area sensor and actuator networking. EURASIP J. Wirel. Commun. Netw. 2012, 2012, 121, doi:10.1186/1687-1499-2012-121.
[138]
Rahman, A.; Gellert, D.; Seed, D.N. Gateway Architecture for Interconnecting Smart Objects to the Internet. In Proceedings of the Workshop Interconnecting Smart Objects with the Internet, Prague, Czech Republic, 25 March 2011.
[139]
Villaverde, B.C.; Pesch, D.; De Paz Alberola, R.; Fedor, S.; Boubekeur, M. Constrained Application Protocol for Low Power Embedded Networks: A Survey. In Proceedings of the Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Palermo, Italy, 4–6 July 2012; pp. 702–707.
[140]
Barbieri, D. CoAP Improvements to Meet Embedded Device Hardware Constraints. In Proceedings of the Workshop Interconnecting Smart Objects with the Internet, Prague, Czech Republic, March 2011.
[141]
Yahyaoui, H.; Maamar, Z.; Boukadi, K. A framework to coordinate web services in composition scenarios. Int. J. Web Grid Serv. 2010, 6, 95–123.
[142]
Gao, L.; Urban, S.D.; Ramachandran, J. A survey of transactional issues for Web Service composition and recovery. Int. J. Web Grid Serv. 2011, 7, 331, doi:10.1504/IJWGS.2011.044709.
[143]
Kim, W. Cloud computing adoption. Int. J. Web Grid Serv. 2011, 7, 225–245, doi:10.1504/IJWGS.2011.043529.
[144]
Rodriguez, J.M.; Zunino, A.; Campo, M. Introducing mobile devices into Grid systems: A survey. Int. J. Web Grid Serv. 2011, 7, 1–40, doi:10.1504/IJWGS.2011.038386.
[145]
Dunkels, A.; Eriksson, J.; Tsiftes, N. Low-power Interoperability for the IPv6-Based Internet of Things. In Proceedings of the 10th Scandinavian Workshop on Wireless Ad-hoc Networks (ADHOC’11), Stockholm, Sweden, 10–11 May 2011.
[146]
Barnaghi, P.; Wang, W.; Henson, C.; Taylor, K. Semantics for the Internet of Things. Int. J. Semant. Web Inf. Syst. 2012, 8, 1–21.
[147]
Shelby, Z.; Chauvenet, C. The IPSO Application Framework. 2012. draft-ipso-app-framework-04.
[148]
Abdulrazak, B.; Chikhaoui, B.; Vallerand, C.G.; Fraikin, B. A standard ontology for smart spaces. Int. J. Web Grid Serv. 2010, 6, 244, doi:10.1504/IJWGS.2010.035091.
[149]
Pfisterer, D.; Romer, K.; Bimschas, D.; Kleine, O.; Mietz, R.; Truong, C.; Hasemann, H.; Kr?ller, A.; Pagel, M.; Hauswirth, M.; et al. SPITFIRE: Toward a semantic web of things. IEEE Commun. Mag. 2011, 49, 40–48, doi:10.1109/MCOM.2011.6069708.
[150]
SweoIG/TaskForces/CommunityProjects/LinkingOpenData. W3C Wiki. Available online: http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData (accessed on 21 December 2012).
[151]
Cosm. Internet of Things Platform Connecting Devices and Apps for Real-Time Control and Data Storage. Available online: https://cosm.com/ (accessed on 21 December 2012).
[152]
solace Info Page. Available online: https://www.ietf.org/mailman/listinfo/solace (accessed on 27 December 2012).
[153]
Ishaq, I.; Hoebeke, J.; Moerman, I.; Demeester, P. Internet of Things Virtual Networks: Bringing Network Virtualization to Constrained Devices. In Proceedings of the IEEE International Conference on Cyber, Physical and Social Computing, Besan?on, France, 20–23 November 2012.
[154]
The DisSeNT project. Available online: http://distrinet.cs.kuleuven.be/software/dissent/ (accessed on 10 December 2012).