全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Learning on Real Robots from Experience and Simple User Feedback

Keywords: autonomous robots , reinforcement learning , user feedback

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article we describe a novel algorithm that allows fast and continuous learning on a physical robot working in a real environment. The learning process is never stopped and new knowledge gained from robot-environment interactions can be incorporated into the controller at any time. Our algorithm lets a human observer control the reward given to the robot, hence avoiding the burden of defining a reward function. Despite the highly-non-deterministic reinforcement, through the experimental results described in this paper, we will see how the learning processes are never stopped and are able to achieve fast robot adaptation to the diversity of different situations the robot encounters while it is moving in several environments.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133