全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Target Achievement Control Test: Evaluating real-time myoelectric pattern-recognition control of multifunctional upper-limb prostheses

Keywords: multifunctional prosthesis , myoelectric control , pattern recognition , performance test , proportional control , prosthesis , surface electromyography , transradial amputation , upper limb , virtual environment

Full-Text   Cite this paper   Add to My Lib

Abstract:

Despite high classification accuracies (~95%) of myoelectric control systems based on pattern recognition, how well offline measures translate to real-time closed-loop control is unclear. Recently, a real-time virtual test analyzed how well subjects completed arm motions using a multiple-degree of freedom (DOF) classifier. Although this test provided real-time performance metrics, the required task was oversimplified: motion speeds were normalized and unintended movements were ignored. We included these considerations in a new, more challenging virtual test called the Target Achievement Control Test (TAC Test). Five subjects with transradial amputation attempted to move a virtual arm into a target posture using myoelectric pattern recognition, performing the test with various classifier (1- vs 3-DOF) and task complexities (one vs three required motions per posture). We found no significant difference in classification accuracy between the 1- and 3-DOF classifiers (97.2% +/- 2.0% and 94.1% +/- 3.1%, respectively; p = 0.14). Subjects completed 31% fewer trials in significantly more time using the 3-DOF classifier and took 3.6 +/- 0.8 times longer to reach a three-motion posture compared with a one-motion posture. These results highlight the need for closed-loop performance measures and demonstrate that the TAC Test is a useful and more challenging tool to test real-time pattern-recognition performance.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133