全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The First Order Autoregressive Model with Coefficient Contains Non-Negative Random Elements: Simulation and Esimation

DOI: 10.4236/ojs.2012.25064, PP. 498-503

Keywords: Random Coefficient Autoregressive Model, Quasi-Maximum Likelihood, Consistency

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper considered an autoregressive time series where the slope contains random components with non-negative values. The authors determine the stationary condition of the series to estimate its parameters by the quasi-maximum likelihood method. The authors also simulates and estimates the coefficients of the simulation chain. In this paper, we consider modeling and forecasting gold chain on the free market in Hanoi, Vietnam.

References

[1]  T. Bollerslev, “Generalized Autoregressive Conditional Heteroscedasticity,” Journal of Econometrics, Vol. 31, No. 3, 1986, pp. 307-327. doi:10.1016/0304-4076(86)90063-1
[2]  D. Nicholls and B. Quinn, “Random Coefficient Autore- gressive Models: An Introduction,” Springer, New York, 1982. doi:10.1007/978-1-4684-6273-9
[3]  A. Aue, L. Horvath and J. Steinbach, “Estimation in Random Coefficient Autoregressive Models,” Journal of Time Series Analysis, Vol. 27, No. 1, 2006, pp. 61-76, doi:10.1111/j.1467-9892.2005.00453.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133