Tembotrione is herbicide which belongs to the triketone
group of herbicides. It’s registered as a selective, post-emergence
herbicide developed for the control of a broad spectrum broadleaf and grassy
weeds in corn. There is little information about tembotrione because of his
short presence in the market. Due to its ever wider application, it is
important to know the details of its chemical characteristics and redox
processes, including biogeochemical transformation and migration after
application to agricultural land, which could contribute to its efficient and
safer application.In this paper we examined voltammetric behavior of tembotrione using
Silver/Amalgam (Ag/Hg) electrode. For the investigation of electrochemical
behavior we used the cyclic voltammetry technique, with conventional
three-electrode cell and electrochemical workstation. During the experiment
pH values of solution varieties while constant concentration of tembotrione
was maintained. Cyclic voltammograms were recorded at pH values 6, 8, 10 and
12, at which tembotrione was electrochemically active. At this pH values two
signals were observed. Optimum pH value, at which the current intensity
was greatest, was 12. Obtained results provide relevant information on the
electrochemical behavior of tembotrione, which can serve as a basis for the
development of electrochemical techniques for the removal and degradation of
this pesticide in the environment.
References
[1]
S. Goldstein, D. Meyerstein and G. Czapski, “The Fenton Reagents,” Free Radical Biology and Medicine, Vol. 15, No. 4, 1993, pp. 435-445.
doi:10.1016/0891-5849(93)90043-T
[2]
H. Ro?knecht, H. Hetzenauer and T. A. Ternes, “Arzn-eimittel im Bodensee?” Nachrichten aus der Chemie, Vol. 49, No. 2, 2001, pp. 145-149.
doi:10.1002/nadc.20010490210
[3]
P. Manisankar, S. Vis-wanathan, A. M. Pusphalatha and C. Rani, “Electrochemical Studies and Square Wave Strip- ping Voltammetry of Five Common Pesticides on Poly 3,4-Ethylenedioxythiophene Mod-ified Wall-Jet Electrode,” Analytica Chimica Acta, Vol. 528, No. 2, 2005, pp. 157- 163. doi:10.1016/j.aca.2004.08.027
[4]
L. Posp???il, R. Sokolova, M. P. Colombini, S. Giannarelli and R. Fuoco, “Electrochemical Properties of Three Di- carbox-imide-Type Pesticides: Vinclozoline, Iprodione and Procymi-done,” Journal of Electroanalytical Chemistry, Vol. 472, No. 1, 1999, pp. 33-41.
doi:10.1016/S0022-0728(99)00256-9
[5]
A. J. F. Edmunds, W. Kramer and U. Schirmer, “Modern Crop Protection Com-pounds,” Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, 2007.
[6]
A. van Almsick, J. Benet-Buchholz, B. Olenik and L. Willms, “Tembotrione, a New Exceptionally Safe Cross-Spectrum Herbicide for Corn Production,” Bayer Crop-Science Journal, Vol. 62, No. 1, 2009, pp. 5-16.
[7]
“Pesticide Fact Sheet,” United States Environmental Protection Agency, Washington DC, 2007.
[8]
W. Schulte and H. K?cher, “Tembotrione and Combina- tion Partner Isoxadifen-Ethyl—Mode of Herbicidal Action,” Bayer CropScience Journal, Vol. 62, No. 1, 2009, pp. 35-52.
[9]
G. Erdogdu and S. Titretir, “Voltammetric Determination of Mesotrione at Hanging Mercury Drop Electrode,” Journal of Analytical Chemistry, Vol. 62, No. 8, 2007, pp. 777-780. doi:10.1134/S106193480708014X
[10]
J. Fischer, J. Barek, B. Yosypchuk and T. Navratil, “Vol- tammetric Determination of Trace Amounts of 2-Methyl- 4,6-Dinitrophenol at a Silver Solid Amalgam Electrode,” Electroanalysis, Vol. 18, No. 2, 2005, pp. 127-130.
doi:10.1002/elan.200503366
[11]
M. Jovi?, D. Manojlovi?, D. Stankovi?, A. Mili?, M. Sen- ti? and G. Rogli?, “Volta Metric Behavior of Mesotrione Using Silver/Amalgam Electrode,” International Journal of Environmental Research, 2012. (In press)
[12]
M. Trojanowicz, “Determination of Pesticides Using Electrochemical Enzymatic Biosensors,” Electroanalysis, Vol. 14, No. 19-20, 2002, pp. 1311-1328.
doi:10.1002/1521-4109(200211)14:19/20<1311::AID-ELAN1311>3.0.CO;2-7
[13]
C. Aprea, C. Colosio, T. Mammone, C. Minoia and M. Maroni, “Biological Monitoring of Pesticide Exposure: A Review of Analytical Methods,” Journal of Chromatog- raphy B, Vol. 769, No. 2, 2002, pp. 191-219.
doi:10.1016/S1570-0232(02)00044-2
[14]
M. Delamar, G. Désarmot, O. Fagebaume, R. Hitmi, J. Pinson and J.-M. Savéant, “Modification of Carbon Fiber Surfaces by Electrochemical Reduction of Aryl Diazonium Salts: Application to Carbon Epoxy Composites,” Carbon, Vol. 35, No. 6, 1997, pp. 801-807.
doi:10.1016/S0008-6223(97)00010-9
[15]
P. J. Elving and J. T. Leone, “Mechanism of the Electro-chemical Reduction of Phenyl Ketones,” Journal of the American Chemical Society, Vol. 80, No. 5, 1958, pp. 1021-1029. doi:10.1021/ja01538a002
[16]
A. Adenier, M.-C. Bernard, M. M. Chehimi, E. Cabet-Deliry, B. Desbat, O. Fagebaume, J. Pinson and F. Podvorica, “Covalent Modification of Iron Surfaces by Electrochemical Reduction of Aryldiazonium Salts,” Journal of the American Chemical Society, Vol. 123, No. 19, 2001, pp. 4541-4549. doi:10.1021/ja003276f
[17]
A. J. Bard and L. R. Faulkner, ”Electrochemical Methods: Fundamentals and Applications,” John Wiley and Sons, Inc., New York, 2001.