全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Relationship between Secondary Structure and Biodegradation Behavior of Silk Fibroin Scaffolds

DOI: 10.1155/2012/185905

Full-Text   Cite this paper   Add to My Lib

Abstract:

Silk fibroin has a unique and useful combination of properties, including good biocompatibility and excellent mechanical performance. These features provided early clues to the utility of regenerated silk fibroin as a scaffold/matrix for tissue engineering. The silk fibroin scaffolds used for tissue engineering should degrade at a rate that matches the tissue growth rate. The relationship between secondary structure and biodegradation behavior of silk fibroin scaffolds was investigated in this study. Scaffolds with different secondary structure were prepared by controlling the freezing temperature and by treatment with carbodiimide or ethanol. The quantitative proportions of each secondary structure were obtained by Fourier transform infrared spectroscopy (FTIR), and each sample was then degraded in vitro with collagenase IA for 18 days. The results show that a high content of β-sheet structure leads to a low degradation rate. The random coil region in the silk fibroin material is degraded, whereas the crystal region remains stable and the amount of β-sheet structure increases during incubation. The results demonstrate that it is possible to control the degradation rate of a silk fibroin scaffold by controlling the content of β-sheet structure. 1. Introduction Silk fibroin is a natural protein produced by the domestic silkworm Bombyx mori, which is composed of a heavy-chain (H-chain, 350?kDa), light-chain (L-chain, 25?kDa), and an accessory protein (30?kDa). The amino acid composition of silk fibroin from Bombyx mori consists primarily of glycine, alanine, and serine [1, 2]. The three simple amino acids form the crystalline regions of silk fibroin, while the amino acids with bulky and polar side chains form the amorphous regions [3]. The silk polymorphs include silk I, silk II, and an air/water assembled interfacial silk III [1, 4]. The molecular conformation of silk II is antiparallel β-sheet structure. Silk fibroin has been used for centuries in production of textiles and clinical sutures [5]. Silk fibroin materials can support the attachment, proliferation, and differentiation of primary cells and cell lines [6–8] and is easily prepared as films [9], porous scaffolds [10], gels [11], and mats [12]. The impressive cytocompatibility and malleability of SF materials make silk a popular starting material for tissue engineering scaffolds used in skin, bone, blood vessel, ligament, and nerve tissue regeneration [13–15]. An ideal tissue engineering scaffold is nonimmunogenic and nontoxic but is biocompatible and supports cell adhesion, proliferation, and

References

[1]  C. Vepari and D. L. Kaplan, “Silk as a biomaterial,” Progress in Polymer Science, vol. 32, no. 8-9, pp. 991–1007, 2007.
[2]  S. Inoue, K. Tanaka, F. Arisaka, S. Kimura, K. Ohtomo, and S. Mizuno, “Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio,” Journal of Biological Chemistry, vol. 275, no. 51, pp. 40517–40528, 2000.
[3]  T. Arai, G. Freddi, R. Innocenti, and M. Tsukada, “Biodegradation of bombyx mori silk fibroin fibers and films,” Journal of Applied Polymer Science, vol. 91, no. 4, pp. 2383–2390, 2004.
[4]  R. Valluzzi, S. P. Gido, W. Muller, and D. L. Kaplan, “Orientation of silk III at the air-water interface,” International Journal of Biological Macromolecules, vol. 24, no. 2-3, pp. 237–242, 1999.
[5]  R. L. Moy, A. Lee, and A. Zalka, “Commonly used suture materials in skin surgery,” American Family Physician, vol. 44, no. 6, pp. 2123–2128, 1991.
[6]  N. Minoura, S. I. Aiba, Y. Gotoh, M. Tsukada, and Y. Imai, “Attachment and growth of cultured fibroblast cells on silk protein matrices,” Journal of Biomedical Materials Research, vol. 29, no. 10, pp. 1215–1221, 1995.
[7]  R. E. Unger, K. Peters, M. Wolf, A. Motta, C. Migliaresi, and C. J. Kirkpatrick, “Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells,” Biomaterials, vol. 25, no. 21, pp. 5137–5146, 2004.
[8]  X. Y. Luan, Y. Wang, X. Duan et al., “Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated Antheraea pernyi silk fibroin films,” Biomedical Materials, vol. 1, no. 4, pp. 181–187, 2006.
[9]  Q. Lu, X. Hu, X. Wang et al., “Water-insoluble silk films with silk I structure,” Acta Biomaterialia, vol. 6, no. 4, pp. 1380–1387, 2010.
[10]  M. Li, M. Ogiso, and N. Minoura, “Enzymatic degradation behavior of porous silk fibroin sheets,” Biomaterials, vol. 24, no. 2, pp. 357–365, 2003.
[11]  S. Q. Yan, C. X. Zhao, X. F. Wu, Q. Zhang, and M. Z. Li, “Gelation behavior of Antheraea pernyi silk fibroin,” Science China Chemistry, vol. 53, no. 3, pp. 535–541, 2010.
[12]  A. Schneider, X. Y. Wang, D. L. Kaplan, J. A. Garlick, and C. Egles, “Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing,” Acta Biomaterialia, vol. 5, no. 7, pp. 2570–2578, 2009.
[13]  L. Meinel, R. Fajardo, S. Hofmann et al., “Silk implants for the healing of critical size bone defects,” Bone, vol. 37, no. 5, pp. 688–698, 2005.
[14]  L. Soffer, X. Wang, X. Zhang et al., “Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts,” Journal of Biomaterials Science, vol. 19, no. 5, pp. 653–664, 2008.
[15]  L. Uebersax, H. P. Merkle, and L. Meinel, “Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells,” Journal of Controlled Release, vol. 127, no. 1, pp. 12–21, 2008.
[16]  A. W. Lloyd, “Interfacial bioengineering to enhance surface biocompatibility,” Medical device technology, vol. 13, no. 1, pp. 18–21, 2002.
[17]  R. Langer and J. P. Vacanti, “Tissue engineering,” Science, vol. 260, no. 5110, pp. 920–926, 1993.
[18]  Y. Wang, D. D. Rudym, A. Walsh et al., “In vivo degradation of three-dimensional silk fibroin scaffolds,” Biomaterials, vol. 29, no. 24-25, pp. 3415–3428, 2008.
[19]  Y. Yang, Y. Zhao, Y. Gu et al., “Degradation behaviors of nerve guidance conduits made up of silk fibroin in vitro and in vivo,” Polymer Degradation and Stability, vol. 94, no. 12, pp. 2213–2220, 2009.
[20]  P. Taddei, T. Arai, A. Boschi, P. Monti, M. Tsukada, and G. Freddi, “In vitro study of the proteolytic degradation of Antheraea pernyi silk fibroin,” Biomacromolecules, vol. 7, no. 1, pp. 259–267, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133