全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Integrated Feature Selection and Clustering for Taxonomic Problems within Fish Species Complexes

DOI: 10.4304/jmm.3.3.10-17

Keywords: feature selection , clustering , taxonomy , shape analysis , false discovery rate , image fusion

Full-Text   Cite this paper   Add to My Lib

Abstract:

As computer and database technologies advance rapidly, biologists all over the world can share biologically meaningful data from images of specimens and use the data to classify the specimens taxonomically. Accurate shape analysis of a specimen from multiple views of 2D images is crucial for finding diagnostic features using geometric morphometric techniques. We propose an integrated feature selection and clustering framework that automatically identifies a set of feature variables to group specimens into a binary cluster tree. The candidate features are generated from reconstructed 3D shape and local saliency characteristics from 2D images of the specimens. A Gaussian mixture model is used to estimate the significance value of each feature and control the false discovery rate in the feature selection process so that the clustering algorithm can efficiently partition the specimen samples into clusters that may correspond to different species. The experiments on a taxonomic problem involving species of suckers in the genus Carpiodes demonstrate promising results using the proposed framework with only a small size of samples.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133