全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Left and Right Inverse Eigenpairs Problem of Orthogonal Matrices

DOI: 10.4236/am.2012.312271, PP. 1972-1976

Keywords: Left and Right Eigenpairs, Orthogonal Matrices, Optimal Approximation

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, the left and right inverse eigenpairs problem of orthogonal matrices and its optimal approximation solution are considered. Based on the special properties of eigenvalue and the special relations of left and right eigenpairs for orthogonal matrices, we find the equivalent problem, and derive the necessary and sufficient conditions for the solvability of the problem and its general solutions. With the properties of continuous function in bounded closed set, the optimal approximate solution is obtained. In addition, an algorithm to obtain the optimal approximation and numerical example are provided.

References

[1]  J. H. Wilkinson, “The Algebraic Eigenvalue Problem,” Oxford University Press, Oxford, 1965.
[2]  M. Arav, D. Hershkowitz, V. Mehrmann, et al., “The Recursive Inverse Eigenvalue Problem,” SIAM Journal on Matrix Analysis and Applications, Vol. 22, No. 2, 2000, pp. 392-412.
[3]  R. Loewy and V. Mehrmann, “A Note on the Symmetric Recursive Inverse Eigenvalue Problem,” SIAM Journal on Matrix Analysis and Applications, Vol. 25, No. 1, 2003, pp. 180-187.
[4]  L. Zhang and D. X. Xie, “A Class of Inverse Eigenvalue Problems,” Acta Mathematica Scientia, Vol. 1, No. 13, 1993, pp. 94-99.
[5]  F. L. Li, X. Y. Hu and L. Zhang, “Left and Right Eigenpairs Problem of Skew-Centrosymmetric Matrices,” Applied Mathematics and Computation, Vol. 177, No. 1, 2006, pp. 105-110.
[6]  F. L. Li, X. Y. Hu and L. Zhang, “Left and Right Inverse Eigenpairs Problem of Generalized Centrosymmetric Matrices and Its Optimal Approximation Problem,” Applied Mathematics and Computation, Vol. 212, No. 1, 2009, pp. 481-487. doi:10.1016/j.amc.2009.02.035
[7]  F. L. Li and K. K. Zhang, “Left and Right Inverse Eigenpairs Problem for the Symmetrizable Matrices,” Proceedings of the Ninth International Conference on Matrix Theory and Its Applications, Vol. 1, 2010, pp. 179-182.
[8]  M. L. Liang and L. F. Dai, “The Left and Right Inverse Eigenvalue Problems of Generalized Reflexive and Anti-Reflexive Matrices,” Journal of Computational and Applied Mathematics, Vol. 234, No. 3, 2010, pp. 743-749.
[9]  H. Dai, “The Theory of Matrices,” Science Press, Beijing, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133