全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Some Properties of the Class of Univalent Functions with Negative Coefficients

DOI: 10.4236/am.2012.312251, PP. 1851-1856

Keywords: Analytic Function, Unit Disc, Coefficient Inequality, Closure Properties, Distortion Bound

Full-Text   Cite this paper   Add to My Lib

Abstract:

The main object of this paper is to study some properties of certain subclass of analytic functions with negative coefficients defined by a linear operator in the open unit disc. These properties include the coefficient estimates, closure properties, distortion theorems and integral operators.

References

[1]  B. C. Carlson and D. B. Shaffer, “Starlike and Prestarlike Hypergeometric Functions,” SIAM Journal on Mathe matical Analysis, Vol. 15, No. 4, 1984, pp. 737-745. doi:10.1137/0515057
[2]  A. Catas, “On a Certain Differential Sandwich Theorem Associated with a New Generalized Derivative Operator,” General Mathematics, Vol. 17, No. 4, 2009, pp. 83-95.
[3]  A. A. Amer and M. Darus, “A Distortion Theorem for a Certain Class of Bazilevic Function,” International Journal of Mathematical Analysis, Vol. 6, No. 12, 2012, pp. 591-597.
[4]  A. A. Amer and M. Darus, “On a Property of a Subclass of Bazilevic Functions,” Missouri Journal of Mathematical Sciences, In Press.
[5]  St. Ruscheweyh, “New Criteria for Univalent Functions,” Proceedings of the American Mathematical Society, Vol. 49, No. 1, 1975, pp. 109-115.
[6]  G. S. Salagean, “Subclasses of Univalent Functions,” Lecture Notes in Mathematics, Vol. 1013, 1983, pp. 362-372. doi:10.1007/BFb0066543
[7]  F. M. Al-Oboudi, “On Univalent Functions Defined by a Generalized Salagean Operator,” International Journal of Mathematics and Mathematical Sciences, Vol. 2004, No. 27, 2004, pp. 1429-1436. doi:10.1155/S0161171204108090
[8]  A. W. Goodman, “Univalent Functions and Nonanalytic Curves,” Proceedings of the American Mathematical Society, Vol. 8, No. 3, 1957, pp. 598-601. doi:10.1090/S0002-9939-1957-0086879-9
[9]  St. Ruscheweyh, “Neighborhoods of Univalent Functions,” Proceedings of the American Mathematical Society, Vol. 81, No. 4, 1981, pp. 521-527. doi:10.1090/S0002-9939-1981-0601721-6
[10]  O. Alintas, H. Irmak and H. M. Srivastava, “Fractional Calculus and Certain Starlike Functions with Negative Coefficietns,” Computers & Mathematics with Applications, Vol. 30, No. 2, 1995, pp. 9-15. doi:10.1016/0898-1221(95)00073-8
[11]  O. Alintas, “On a Subclass of Certain Starlike Functions with Negative Coefficients,” Journal of the Mathematical Society of Japan, Vol. 36, 1991, pp. 489-495.
[12]  H. Silverman, “Univalent Functions with Negative Coefficients,” Proceedings of the American Mathematical Society, Vol. 51, No. 1, 1975, pp. 109-116. doi:10.1090/S0002-9939-1975-0369678-0
[13]  S. K. Chatterjea, “On Starlike Functions,” Journal of Pure Mathematics, Vol. 1, 1981, pp. 23-26.
[14]  H. M. Srivastava, S. Owa and S. K. Chatterjea, “A Note on Certain Classes of Starlike Functions,” Rendiconti del Seminario Matematico della Università di Padova, Vol. 77, 1987, pp.115-124.
[15]  M. D. Hur and G. H. Oh, “On Certain Class of Analytic Functions with Negative Coefficients,” Pusan Kyongnam Mathematical Journal, Vol. 5, No. 1, 1989, pp. 69-80.
[16]  M. Kamali, “Neighborhoods of a New Class of p-Valently Functions with Negative Coefficients,” Mathematical Inequalities & Applications, Vol. 9, No. 4, 2006, pp. 661-670. doi:10.7153/mia-09-59
[17]  A. Catas, “Neighborhoods of a Certain Class of Analytic Functions with Negative Coefficients,” Banach Journal of Mathematical Analysis, Vol. 3, No. 1, 2009, pp. 111-121.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133