全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fully Integrated Solar Energy Harvester and Sensor Interface Circuits for Energy-Efficient Wireless Sensing Applications

DOI: 10.3390/jlpea3010009

Keywords: analog integrated circuits, solar energy harvesting, ultra-low power circuits, power management circuits, sensor interface circuits, wireless sensor networks

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents an energy-efficient solar energy harvesting and sensing microsystem that harvests solar energy from a micro-power photovoltaic module for autonomous operation of a gas sensor. A fully integrated solar energy harvester stores the harvested energy in a rechargeable NiMH microbattery. Hydrogen concentration and temperature are measured and converted to a digital value with 12-bit resolution using a fully integrated sensor interface circuit, and a wireless transceiver is used to transmit the measurement results to a base station. As the harvested solar energy varies considerably in different lighting conditions, in order to guarantee autonomous operation of the sensor, the proposed area- and energy-efficient circuit scales the power consumption and performance of the sensor. The power management circuit dynamically decreases the operating frequency of digital circuits and bias currents of analog circuits in the sensor interface circuit and increases the idle time of the transceiver under reduced light intensity. The proposed microsystem has been implemented in a 0.18 μm complementary metal-oxide-semiconductor (CMOS) process and occupies a core area of only 0.25 mm 2. This circuit features a low power consumption of 2.1 μW when operating at its highest performance. It operates with low power supply voltage in the 0.8V to 1.6 V range.

References

[1]  Jia, G.; Steglich, M.; Sill, I.; Falk, F. Core-shell heterojunction solar cells on silicon nanowire arrays. Sol. Energy Mater. Sol. Cells 2012, 96, 226–230, doi:10.1016/j.solmat.2011.09.062.
[2]  Varra V6HR Datasheet. Available online: http://www.varta-microbattery.com (accessed on 3 December 2012).
[3]  Toumaz TZ1053 Datasheet. Available online: http://www.toumaz.com/page.php?page=telran (accessed on 3 December 2012).
[4]  Chen, G.; Ghaed, H.; Haque, R.; Wieckowski, M.; Yejoong, K.; Gyouho, K.; Fick, D.; Daeyeon, K.; Mingoo, S.; Wise, K.; Blaauw, D.; Sylvester, D. A Cubic-Millimeter Energy-Autonomous Wireless Intraocular Pressure Monitor. In Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 20–24 February 2011; pp. 310–312.
[5]  Qiu, Y.; Liempd, C.V.; Veld, B.O.H.; Blanken, P.G.; Hoof, C.V. 5 μW-to-10 mW Input Power Range Inductive Boost Converter for Indoor Photovoltaic Energy Harvesting with Integrated Maximum Power Point Tracking Algorithm. In Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 20–24 February 2011; pp. 118–120.
[6]  Khosro Pour, N.; Krummenacher, F.; Kayal, M. Fully integrated ultra-low power management system for micro-power solar energy harvesting applications. Electron. Lett. 2012, 48, 338–118, doi:10.1049/el.2012.0315.
[7]  Offermans, P.; Tong, H.D.; Van Rijn, C.J.M.; Merken, P.; Brongersma, S.H.; Crego-Calama, M. Ultralow-power hydrogen sensing with single palladium nanowires. Appl. Phys. Lett. 2009, 94, 223110–223113.
[8]  Van der Bent, J.F.; van Rijn, C.J.M. Ultra low power temperature compensation method for palladium nanowire grid. Procedia Eng. 2010, 5, 184–187, doi:10.1016/j.proeng.2010.09.078.
[9]  Pour, N.K.; Krummenacher, F.; Kayal, M. A Miniaturized Autonomous Microsystem For Hydrogen Gas Sensing Applications. In Proceedings of IEEE 10th International New Circuits and Systems Conference, Montreal, Canada, 17–20 June 2012; pp. 201–204.
[10]  Cap-XX Co. Website. Available online: http://www.cap-xx.com (accessed on 3 December 2012).
[11]  InfinitePowerSolutions Co. Website. Available online: http://www.infinitepowersolutions.com (accessed on 3 December 2012).
[12]  Lu, C.; Raghunathan, V.; Roy, K. Micro-Scale Energy Harvesting: A System Design Perspective. In Proceedings of 15th Asia and South Pacific Design Automation Conference (ASP-DAC), Taipei, Taiwan, 18–21 January 2010; pp. 89–94.
[13]  Markus, J.; Silva, J.; Temes, G.C. Theory and applications of incremental ΔΣ converters. IEEE Trans. Circuits Syst. 2004, 51, 678–690, doi:10.1109/TCSI.2004.826202.
[14]  Zarlink ZL70250 Datasheet. Available online: http://www.zarlink.com/zarlink (accessed on 3 December 2012).
[15]  Esram, E.; Chapman, P.L. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Conver. 2007, 22, 439–449, doi:10.1109/TEC.2006.874230.
[16]  Lu, C.; Raghunathan, V.; Roy, K. Maximum power point considerations in micro-scale solar energy harvesting systems. In Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), Paris, France, 30 May–2 June 2010; pp. 273–276.
[17]  Pastre, M.; Krummenacher, F.; Kazanc, O.; Khosro Pour, N.; Pace, C.; Rigert, S.; Kayal, M. A solar battery charger with maximum power point tracking. In Proceedings of 18th IEEE International Conference on ElectronicsCircuits and Systems (ICECS), Beirut, Lebanon, 11–14 December 2011; pp. 394–397.
[18]  Pastre, M.; Krummenacher, F.; Robortella, R.; Simon-Vermot, R.; Kayal, M. A fully integrated solar battery charger. In Proceedings of Joint IEEE North-East Workshop on Circuits and Systems and TAISA Conference, Toulouse, France, 28 June–1 July 2009; pp. 1–4.
[19]  Pertijs, M.A.P.; Makinwa, K.A.A.; Huijsing, J.H. A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1 °C from ?55 °C to 125 °C. IEEE J. Solid State Circuits 2005, 40, 2805–2815, doi:10.1109/JSSC.2005.858476.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133