全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Generalized Version of the Earle-Hamilton Fixed Point Theorem for the Hilbert Ball

DOI: 10.5539/jmr.v4n2p45

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $D$ be a bounded domain in a complex Banach space. According to the Earle-Hamilton fixed point theorem, if a holomorphic mapping $F: D mapsto D$ maps $D$ strictly into itself, then it has a unique fixed point and its iterates converge to this fixed point locally uniformly. Now let $mathcal{B}$ be the open unit ball in a complex Hilbert space and let $F : mathcal{B} mapsto mathcal{B}$ be holomorphic. We show that a similar conclusion holds even if the image $F(mathcal{B})$ is not strictly inside $mathcal{B}$, but is contained in a horosphere internally tangent to the boundary of $mathcal{B}$. This geometric condition is equivalent to the fact that $F$ is asymptotically strongly nonexpansive with respect to the hyperbolic metric in $mathcal{B}$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133