全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Precise asymptotic behavior of solutions to damped simple pendulum equations

Keywords: Damped simple pendulum , asymptotic formula

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider the simple pendulum equation $$displaylines{ -u''(t) + epsilon f(u'(t)) = lambdasin u(t), quad t in I:=(-1, 1),cr u(t) > 0, quad t in I, quad u(pm 1) = 0, }$$ where $0 < epsilon le 1$, $lambda > 0$, and the friction term is either $f(y) = pm|y|$ or $f(y) = -y$. Note that when $f(y) = -y$ and $epsilon = 1$, we have well known original damped simple pendulum equation. To understand the dependance of solutions, to the damped simple pendulum equation with $lambda gg 1$, upon the term $f(u'(t))$, we present asymptotic formulas for the maximum norm of the solutions. Also we present an asymptotic formula for the time at which maximum occurs, for the case $f(u) = -u$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133