全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Existence and uniqueness of weak and entropy solutions for homogeneous Neumann boundary-value problems involving variable exponents

Keywords: Elliptic equation , weak solution , entropy solution , Leray-Lions operator , variable exponent

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article we study the nonlinear homogeneous Neumann boundary-value problem $$displaylines{ b(u)-hbox{div} a(x, abla u)=fquad hbox{in } Omegacr a(x, abla u).eta=0 quadhbox{on }partial Omega, }$$ where $Omega$ is a smooth bounded open domain in $mathbb{R}^{N}$, $N geq 3$ and $eta$ the outer unit normal vector on $partialOmega$. We prove the existence and uniqueness of a weak solution for $f in L^{infty}(Omega)$ and the existence and uniqueness of an entropy solution for $L^{1}$-data $f$. The functional setting involves Lebesgue and Sobolev spaces with variable exponents.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133