全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Uniform and Non-Uniform Optimum Scalar Quantizers Performances: A Comparative Study

DOI: 10.5614/itbj.ict.2008.2.1.1

Keywords: Lloyd-Max Quantiser , Shannon Limit , Source Coding , Uniform Quantiser

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this research is to investigate source coding, the representation of information source output by finite R bits/symbol. The performance of optimum quantisers subject to an entropy constraint has been studied. The definitive work in this area is best summarised by Shannon’s source coding theorem, that is, a source with entropy H can be encoded with arbitrarily small error probability at any rate R (bits/source output) as long as R>H. Conversely, If R the error probability will be driven away from zero, independent of the complexity of the encoder and the decoder employed. In this context, the main objective of engineers is however to design the optimum code. Unfortunately, the rate-distortion theorem does not provide the recipe for such a design. The theorem does, however, provide the theoretical limit so that we know how close we are to the optimum. The full understanding of the theorem also helps in setting the direction to achieve such an optimum. In this research, we have investigated the performances of two practical scalar quantisers, i.e., a Lloyd-Max quantiser and the uniformly defined one and also a well-known entropy coding scheme, i.e., Huffman coding against their theoretically attainable optimum performance due to Shannon’s limit R. It has been shown that our uniformly defined quantiser could demonstrate superior performance. The performance improvements, in fact, are more noticeable at higher bit rates.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133