全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Matrix elements for sum of power-law potentials in quantum mechanic using generalized hypergeometric functions

Keywords: Schrodinger equation , variational technique , eigenvalues , upper bounds , analytical computations

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we derive close form for the matrix elements for $hat H=-Delta +V$, where $V$ is a pure power-law potential. We use trial functions of the form $$ psi _n(r)= sqrt{{frac{2eta ^{gamma/2}(gamma )_n} {n!Gamma(gamma )}}} r^{gamma - 1/2} e^{-frac{sqrt{eta }}{2}r^q} _pF_1 ( -n,a_2,ldots ,a_p;gamma;sqrt {eta } r^q), $$ for $eta, q,gamma >0$ to obtain the matrix elements for $hat H$. These formulas are then optimized with respect to variational parameters $eta ,q$ and $gamma $ to obtain accurate upper bounds for the given nonsolvable eigenvalue problem in quantum mechanics. Moreover, we write the matrix elements in terms of the generalized hypergeomtric functions. These results are generalization of those found earlier in [2], [8-16] for power-law potentials. Applications and comparisons with earlier work are presented.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133