全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impulsive dynamic equations on a time scale

Keywords: Fixed point theory , nonlinear dynamic equation , stability , impulses

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $mathbb{T}$ be a time scale such that $0, t_i, T in mathbb{T}$, $i = 1, 2, dots, n$, and $0 < t_i < t_{i+1}$. Assume each $t_i$ is dense. Using a fixed point theorem due to Krasnosel'skii, we show that the impulsive dynamic equation $$displaylines{ y^{Delta}(t) = -a(t)y^{sigma}(t)+ f ( t, y(t) ),quad t in (0, T],cr y(0) = 0,cr y(t_i^+) = y(t_i^-) + I (t_i, y(t_i) ), quad i = 1, 2, dots, n, }$$ where $y(t_i^pm) = lim_{t o t_i^pm} y(t)$, and $y^Delta$ is the $Delta$-derivative on $mathbb{T}$, has a solution. Under a slightly more stringent inequality we show that the solution is unique using the contraction mapping principle. Finally, with the aid of the contraction mapping principle we study the stability of the zero solution on an unbounded time scale.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133