Regarding standards, it is well established that common mode currents are the main source of far field emitted by variable frequency drive (VFD)-cable-motor associations. These currents are generated by the combination of floating potentials with stray capacitances between these floating potential tracks and the mechanical parts connected to the earth (the heatsink or cables are usual examples). Nowadays, due to frequency and power increases, the systematic compliance to EMC (ElectroMagnetic Compatibility) becomes increasingly difficult and costly for industrials. As a consequence, there is a well-identified need to investigate practical and low cost solutions to reduce the radiated fields of VFD-cable-motor associations. A well-adapted solution is the shielding of wound components well known as the major source of near magnetic field. However, this solution is not convenient, it is expensive and may not be efficient regarding far field reduction. Optimizing the components placement could be a better and cheaper solution. As a consequence, dedicated tools have to be developed to efficiently investigate not easy comprehendible phenomena and finally to control EMC disturbances using component placement, layout geometry, shielding design if needed. However, none of the modeling methods usually used in industry complies with large frequency range and far field models including magnetic materials, multilayer PCBs, and shielding. The contribution of this paper is to show that alternatives regarding modeling solutions exist and can be used to get in-deep analysis of such complex structures. It is shown in this paper that near field investigations can give information on far field behavior. It is illustrated by an investigation of near field interactions and shielding influence using a FE-PEEC hybrid method. The test case combining a common mode filter with the floating potentials tracks of an inverter is based on an industrial and commercialized VFD. The near field interactions between the common mode inductance and the tracks with floating potentials are revealed. Then, the influence of the common mode inductance shielding is analyzed.
References
[1]
Wu, M.K.; Tse, C.K. Development of an integrated CAD tool for switching power supply design with EMC performance evaluation. IEEE Trans. Ind. Appl. 1998, 34, 364–373, doi:10.1109/28.663481.
[2]
Nagesware Rao, K.; Venkata Ramana, P. EMC analysis in PCB designs using and expert system. Int. Conf. EMI EMC 1995, 59–62.
[3]
Xin, W.; Pong, M.H.; Lee, C.M.; Qian, Z.M. Reduction of EMI by Electric Field Method. In Proceedings of the Fourteenth Annual Applied Power Electronics Conference and Exposition, Dallas, TX, USA, March 1999; pp. 135–138.
[4]
Xin, W.; Pong, M.H.; Lee, C.M.; Qian, Z.M. A Novel Approach Base on Electric Field Analysis to Reduce Crosstalk Problem on PCB. In Proceedings of the 30th Annual IEEE Power Electronics Specialists Conference, Charleston, SC, USA, March 1999; pp. 845–849.
[5]
Sroka, J. On the coupling of the generalized multipole technique with the finite element method. IEEE Trans. Magn. 1990, 26, 658–661, doi:10.1109/20.106403.
[6]
Jin, J.-M.; Volakis, J.L.; Collins, J.D. A finite-element_boundary-integral method for scattering and radiation by two- and three-dimensional structures. IEEE Antennas Propag. Mag. 1991, 33, 22–32.
[7]
Tran, T.-S.; Meunier, G.; Labie, P.; Le Floch, Y.; Roudet, J.; Guichon, J.-M.; Roudet, J.; Maréchal, Y. Coupling PEEC-Finite element method for solving electromagnetic problem. IEEE Trans. Magn. 2008, 44, 1330–1333, doi:10.1109/TMAG.2007.916179.
[8]
Mutoh, N.; Ogata, M.; Gulez, K.; Harashima, F. New methods to suppress emi noises in motor drive systems. IEEE Trans. Ind. Electron. 2002, 49, 474–485, doi:10.1109/41.993281.
[9]
Mutoh, N.; Nakashima, J.; Kanesaki, M. Multilayer power printed structures suitable for controlling emi noises generated in power converters. IEEE Trans. Ind. Electron. 2003, 50, 1085–1094, doi:10.1109/TIE.2003.819674.
[10]
Aimé, J.; Roudet, J.; Vollaire, C.; Baudesson, P.; Ecrabey, J. Layout Techniques for Reduction of Common Mode Current in Static Converters. In Proceedings of the 2006 IEEE Industry Applications Conference (41st IAS Annual meeting), Tampa, FL, USA, October 2006; pp. 2296–2303.
[11]
Aimé, J.; Clavel, E.; Roudet, J.; Meunier, G.; Loizelet, P. Electromagnetic Modelling Process to Improve Cabling of Power Electronic Structures. In Proceedings of the ISEF 2009 XIV International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering, Arras, France, 10–12 September 2009. [CD-ROM]; Artois Presse Université: Arras Cedex, France, 2009.
[12]
Yutaka, I.; Tadao, K. Shielding Method of Printed Circuit Board and Device Mounted Printed Board Using this Method. Japanese Patent 2 003078279 A, 14 March 2003.
[13]
CEDRAT Company Homepage. Available online: http://www.cedrat.com (accessed on 10 October 2011).
[14]
Paul, C.R. A comparison of the contributions of common mode and differential mode currents in radiated emissions. IEEE Trans. Electromagn. Compat. 1989, 31, 189–193, doi:10.1109/15.18789.
[15]
Vincent, B.; Chadebec, O.; Schanen, J.L. Multipolar expansion sensors for near field characterization. In Proceedings of the 2008 International Symposium on Electromagnetic Compatibility, Hamburg, Germany, September 2008; pp. 1–4.
[16]
Harrington, R.F. Field Computation by Moment Methods; The Macmillan Company: New York, NY, USA, 1968.
[17]
Ruehli, A.E. Inductance calculations in a complex integrated circuit environment. IBM J. Res. Develop. 1972, 16, 470–481, doi:10.1147/rd.165.0470.
[18]
Cangellaris, A.C. Frequency-Domain Finite Element Methods for Electromagnetic Field Simulation: Fundamentals, State of the Art, and Applications to EMI/EMC Analysis. In Proceedings of the 1996 IEEE International Symposium on Electromagnetic Compatibility, Santa Clara, CA, USA, August 1996; pp. 107–116.
[19]
Aimé, J.; Tran, T.-S.; Clavel, E.; Meunier, G.; Le Floch, Y.; Baudesson, P. Magnetic field computation of a common mode filter using finite element, PEEC methods and their coupling. In Proceedings of the 2008 IEEE International Symposium on Industrial Electronics, Cambridge, UK, 30 June–2 July 2008; pp. 7–12.
[20]
Simkin, J.; Trowbridge, C.W. On the use of the total scalar potential in the numerical solution of field problems in electromagnetics. Int. J. Numer. Methods Eng. 1979, 14, 423–440, doi:10.1002/nme.1620140308.
[21]
Biro, O.; Preis, K.; Buchgraber, G.; Ticar, I. Voltage driven coils in finite-element formulations using a current vector and a magnetic scalar potential. IEEE Trans. Magn. 2004, 40, 1286–1289, doi:10.1109/TMAG.2004.825428.
[22]
Mayergoyz, I.D.; Bedrosian, G. On calculation of 3-D eddy currents in conducting and magnetic shells. IEEE Trans. Magn. 1995, 31, 1319–1324, doi:10.1109/20.376271.
[23]
Guérin, C.; Meunier, G. 3-D Magnetic Scalar Potential Finite Element Formulation for Conducting Shells Coupled With an External Circuit. IEEE Trans. Magn. 2012, 48, 323–326, doi:10.1109/TMAG.2011.2173916.