全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nonlinear Kirchhoff-Carrier wave equation in a unit membrane with mixed homogeneous boundary conditions

Keywords: Nonlinear wave equation , Galerkin method , quadratic convergence , weighted Sobolev spaces.

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we consider the nonlinear wave equation problem $$displaylines{ u_{tt}-Big(|u|_0^2,|u_{r}|_0^2ig)(u_{rr}+frac{1}{r}u_{r}) =f(r,t,u,u_{r}),quad 0less than r less than 1,; 0 less than t less than T, ig|lim_{ro 0^+}sqrt{r}u_{r}(r,t)ig| less than infty, u_{r}(1,t)+hu(1,t)=0, u(r,0)=widetilde{u}_0(r), u_{t}(r,0)=widetilde{u}_1(r). }$$ To this problem, we associate a linear recursive scheme for which the existence of a local and unique weak solution is proved, in weighted Sobolev using standard compactness arguments. In the latter part, we give sufficient conditions for quadratic convergence to the solution of the original problem, for an autonomous right-hand side independent on $u_{r}$ and a coefficient function $B$ of the form $B=B(|u|_0^2)=b_0+|u|_0^2$ with $b_0$ greater than 0.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133