全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Axial Thermodynamic Performance Analysis of the Different Preform C/C Composites

DOI: 10.3724/sp.j.1077.2010.00994

Keywords: C/C composites , perform , braid , needle , axial , tensile strength , thermal expansion coefficient

Full-Text   Cite this paper   Add to My Lib

Abstract:

Axial thermodynamic performance of braid carbon/carbon (C/C) composites and needle C/C composites is compared. Braid C/C composites comprises the radial rod preform composite, the axial rod preform composite and the fine woven punctured preform composite. Needle C/C composites consist of the whole felt preform composites and the carbon clothes/felt layer needling preform composites. The bulk density of the whole felt preform approximates 0.2g/cm3, and the carbon clothes/felt layer needling preform is about 0.45g/cm3. The density of needle preform is less than that of braid perform, which is up to 0.70g/cm3. Axial fiber content of braid preform is more than or equal to 19%, while that of needle preform is only 5%. The axial tensile strength and thermal expansion coefficient are related to the structure of preform and axial fiber content. The average axial tensile strength of braid C/C composites is ≥40MPa, and while the needle C/C composites is around 10MPa. The axial thermal expansion coefficient of the axial rod preform, the fine woven punctured preform, the whole felt preform and the carbon clothes/felt layer needle preform C/C composites is comparative in the range of RT -800 /p>

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133