全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Range of semilinear operators for systems at resonance

Keywords: Resonant systems , semilinear operators , critical point theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

For a vector function $u:mathbb{R} o mathbb{R}^N $ we consider the system $$displaylines{ u''(t)+ abla G(u(t))= p(t)cr u(t)=u(t+T), }$$ where $G: mathbb{R}^N o mathbb{R}$ is a $C^1$ function. We are interested in finding all possible T-periodic forcing terms p(t) for which there is at least one solution. In other words, we examine the range of the semilinear operator $S:H^2_{ m per} o L^2([0,T],mathbb{R}^N)$ given by $Su= u''+ abla G(u)$, where $$ H^2_{ m per}= { uin H^2([0,T], mathbb{R}^N); u(0) - u(T) = u'(0)-u'(T)=0 }. $$ Writing $p(t)= overline{p} + widetilde{p}(t)$, where $overline{p}:=frac 1Tint_0^Tp(t), dt$, we present several results concerning the topological structure of the set $$ mathcal{I}(widetilde{p})={ overline{p} in mathbb{R}^N; overline{p} + widetilde{p}in operatorname{Im}(S)}. $$

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133