全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Existence of bound state solutions for degenerate singular perturbation problems with sign-changing potentials

Keywords: Semilinear degenerate elliptic equation , singular perturbation , variational method , sign-changing potential , nonlinear Schrodinger equation , bound state solution

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article, we study the degenerate singular perturbation problems $$displaylines{ -varepsilon^2hbox{div}(|x|^{-2a} abla u)+|x|^{-2(a+1)}V(x)u = |x|^{-b2^*(a,b)}g(x,u),cr -hbox{div}(|x|^{-2a} abla u)+ lambda |x|^{-2(a+1)}V(x)u = |x|^{-b2^*(a,b)}g(x,u), }$$ for $varepsilon$ small and $lambda$ large positive, where $x in mathbb{R}^N$ with $N geq 3$. We search for solutions that decay to zero as $|x| o +infty$, when g is superlinear in the potential function changes signs. We prove the existence of bound state solutions for degenerate, singular, semilinear elliptic problems. Additionally, when the nonlinearity g(x,u) is an odd function of u, we obtain infinitely many geometrically distinct solutions.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133