全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ex vivo development, expansion and in vivo analysis of a novel lineage of dendritic cells from hematopoietic stem cells

DOI: 10.1186/1476-8518-8-8

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dendritic cells (DCs) play a key role in innate and adaptive immunity but the access to sufficient amount of DCs for basic and translational research has been limited. We established a novel ex vivo system to develop and expand DCs from hematopoietic stem/progenitor cells (HPCs). Both human and mouse HPCs were expanded first in feeder culture supplemented with c-Kit ligand (KL, stem cell factor, steel factor or CD117 ligand), Flt3 ligand (fms-like tyrosine kinase 3, Flt3L, FL), thrombopoietin (TPO), IL-3, IL-6, and basic fibroblast growth factor (bFGF), and then in a second feeder culture ectopically expressing all above growth factors plus GM-CSF and IL-15. In the dual culture system, CD34+ HPCs differentiated toward DC progenitors (DCPs), which expanded more than five orders of magnitude. The DCPs showed myeloid DC surface phenotype with up-regulation of transcription factors PU.1 and Id2, and DC-related factors homeostatic chemokine ligand 17 (CCL17) and beta-chemokine receptor 6 (CCR6). Multiplex ELISA array and cDNA microarray analyses revealed that the DCPs shared some features of IL-4 and IL-15 DCs but displayed a pronounced proinflammatory phenotype. DCP-derived DCs showed antigen-uptake and immune activation functions analogous to that of the peripheral blood-derived DCs. Furthermore, bone marrow HPC-derived DCP vaccines of tumor-bearing mice suppressed tumor growth in vivo. This novel approach of generating DCP-DCs, which are different from known IL-4 and IL-15 DCs, overcomes both quantitative and qualitative limitations in obtaining functional autologous DCs from a small number of HPCs with great translational potential.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133