To investigate the temporary tamponade effects of an ophthalmic viscosurgical device (OVD) for experimental retinal tears, we performed vitrectomy in four rabbit eyes and created a posterior vitreous detachment and artificial retinal tear to produce retinal detachment. The retina was flattened with liquid perfluorocarbon (PFC), the area peripheral to the tear was photocoagulated, an OVD was applied to the retinal tear surface below the PFC and the PFC was removed by aspiration. In the control group, PFC was removed without application of OVD. At one, three and seven days postoperatively, funduscopy and optical coherence tomography (OCT) were performed to examine the sealing process of the retinal tear. In OVD-treated eyes, the OVD remained on the retinal surface, and the retinal tear was patched for ≥ 3 days postoperatively. By seven days postoperatively, the OVD on the retinal surface had disappeared, and the retina was reattached. In control eyes, the edge of the retinal tear was rolled, and retinal detachment persisted. In OVD-treated eyes, the border of the retinal tear was indistinct, and the defect area was significantly decreased. These results show that application of an OVD effectively seals retinal tears and eliminates retinal detachments.
References
[1]
Minihan, M.; Tanner, V.; Williamson, T.H. Primary rhegmatogenous retinal detachment: 20 years of change. Br. J. Ophthalmol. 2001, 85, 546–548, doi:10.1136/bjo.85.5.546.
Hida, T.; Sheta, S.M.; Proia, A.D.; McCuen, B.W. Retinal toxicity of cyanoacrylate tissue adhesive in the rabbit. Retina 1988, 8, 148–153, doi:10.1097/00006982-198808020-00013.
[8]
Sueda, J.; Fukuchi, T.; Usumoto, N.; Okuno, T.; Arai, M.; Hirose, T. Intraocular use of hydrogel tissue adhesive in rabbit eyes. Jpn. J. Ophthalmol. 2007, 51, 89–95, doi:10.1007/s10384-006-0405-2.
[9]
Liggett, P.E.; Cano, M.; Robin, J.B.; Green, R.L.; Lean, J.S. Intravitreal biocompatibility of mussel adhesive protein. A preliminary study. Retina 1990, 10, 144–147, doi:10.1097/00006982-199004000-00011.
Teruya, K.; Sueda, J.; Arai, M.; Tsurumaru, N.; Yamakawa, R.; Hirata, A.; Hirose, T. Patching retinal breaks with Seprafilm in experimental rhegmatogenous retinal detachment of rabbit eyes. Eye 2009, 23, 2256–2259, doi:10.1038/eye.2008.403.
[12]
Liesegang, T.J. Viscoelastic substances in ophthalmology. Surv. Ophthalmol. 1990, 34, 268–293, doi:10.1016/0039-6257(90)90027-S.
[13]
Glasser, D.B.; Katz, H.R.; Boyd, J.E.; Langdon, J.D.; Shobe, S.L.; Peiffer, R.L. Protective effects of viscous solutions in phacoemulsification and traumatic lens implantation. Arch. Ophthalmol. 1989, 107, 1047–1051, doi:10.1001/archopht.1989.01070020109041.
[14]
Koch, D.D.; Liu, J.F.; Glasser, D.B.; Merin, L.M.; Haft, E. A comparison of corneal endothelial changes after use of Healon or Viscoat during phacoemulsification. Am. J. Ophthalmol. 1993, 115, 188–201.
[15]
Baino, F. Towards an ideal biomaterial for vitreous replacement: Historical overview and future trends. Acta Biomater. 2011, 7, 921–935, doi:10.1016/j.actbio.2010.10.030.
[16]
McDermott, M.L.; Hazlett, L.D.; Barrett, R.P.; Lambert, R.J. Viscoelastic adherence to corneal endothelium following phacoemulsification. J. Cataract. Refract. Surg. 1998, 24, 678–683.
[17]
Hu, M.; Sabelman, E.E.; Tsai, C.; Tan, J.; Hentz, V.R. Improvement of Schwann cell attachment and proliferation on modified hyaluronic acid strands by polylysine. Tissue Eng. 2000, 6, 585–593, doi:10.1089/10763270050199532.
[18]
Lane, D.; Motolko, M.; Yan, D.B.; Ethier, C.R. Effect of healon and viscoat on outflow facility in human cadaver eyes. J. Cataract. Refract. Surg. 2000, 26, 277–281, doi:10.1016/S0886-3350(99)00357-0.
[19]
Yamada, T.; Sawada, R.; Tsuchiya, T. The effect of sulfated hyaluronan on the morphological transformation and activity of cultured human astrocytes. Biomaterials 2008, 29, 3503–3513, doi:10.1016/j.biomaterials.2008.03.044.
[20]
Hirata, A.; Okinami, S. Viability of topical endoscopic imaging system for vitreous surgery in rabbit eyes. Ophthalmic Surg. Lasers Imaging 2012, 43, 64–67.