For the purpose of developing a novel ablation therapy for oral cancer, the heat generation and transfer properties of a Ti-coated carbon steel rod with 20-mm length and 1.8-mm outer diameter were investigated by means of a high-frequency induction technique at 300 kHz. The heat generation measurement performed using water (15 mL) revealed that the difference of the inclination angles (θ = 0°, 45° and 90°) relative to the magnetic flux direction only slightly affects the heating behavior, exhibiting the overlapped temperature curves during an induction time of 1200 s. These results suggest that the effect of the shape magnetic anisotropy is almost eliminated, being convenient for the precise control of the ablation temperature in clinical use. In the experiments utilizing a tissue-mimicking phantom, the heat transfer concentrically occurred in the lateral direction for both the planar surface and a 10-mm deep cross-section. However, the former exhibited a considerably lower increase in temperature (ΔT), probably due to the effect of heat dissipation to the ambient air. No significant heat transfer was found to occur to the lower side of the inserted Ti-coated carbon steel rod, which is situated in the longitudinal direction.
References
[1]
Neville, B.W.; Day, T.A. Oral cancer and precancerous lesions. CA Cancer J. Clin.?2002, 52, 195–215, doi:10.3322/canjclin.52.4.195.
[2]
MacCarthy, D.; Flint, S.R.; Healy, C.; Stassen, L.F. Oral and neck examination for early detection of oral cancer—A practical guide. J. Ir. Dent. Assoc.?2011, 57, 195–199. 21922994
[3]
Werning, J.W. Oral Cancer: Diagnosis, Management, and Rehabilitation; Thieme Medical Publishers, Inc.: New York, NY, USA, 2007; pp. 38–41.
[4]
Sciubba, J.J. Oral cancer: The importance of early diagnosis and treatment. Am. J. Clin. Dermatol.?2001, 2, 239–251, doi:10.2165/00128071-200102040-00005.
[5]
Scully, C.; Bagan, J.V. Recent advances in oral oncology 2007: Imaging, treatment and treatment incomes. Oral Oncol.?2008, 44, 211–215, doi:10.1016/j.oraloncology.2008.01.006.
[6]
Yao, M.; Epstein, J.B.; Modi, B.J.; Pytynia, K.B.; Mundt, A.J.; Feldman, L.E. Current surgical treatment of squamous cell carcinoma of the head and neck. Oral Oncol.?2007, 43, 213–223, doi:10.1016/j.oraloncology.2006.04.013.
[7]
Kronenberger, M.B.; Meyers, A.D. Dysphagia following head and neck cancer surgery. Dysphagia?1994, 9, 236–244, doi:10.1007/BF00301917.
[8]
Davies, A.; Epstein, J. Oral Complications of Oral Cancer and Its Management; Oxford University Press: New York, NY, USA, 2010; pp. 80–82.
[9]
Sonis, S.T. Oral mucositis in cancer therapy. J. Support. Oncol.?2004, 2, 3–8. 15605918
[10]
Vissink, A.; Jansma, J.; Spijkervet, F.K.; Burlage, F.R.; Coppes, R.P. Oral sequelae of head and neck radiotherapy. Crit. Rev. Oral Biol. Med.?2003, 14, 199–212, doi:10.1177/154411130301400305.
[11]
Dreizen, S.; Daly, T.E.; Drane, J.B.; Brown, L.R. Oral complication of cancer radiotherapy. Postgrad. Med.?1977, 61, 85–92. 854495
[12]
Burri, R.J.; Lee, N.Y. Concurrent chemotherapy and radiotherapy for head and neck cancer. Expert Rev. Anticancer Ther.?2009, 9, 293–302, doi:10.1586/14737140.9.3.293.
[13]
Molin, Y.; Fayette, J. Current chemotherapies for recurrent/metastatic head and neck cancer. Anticancer Drugs?2011, 22, 621–615, doi:10.1097/CAD.0b013e3283421f7c.
[14]
Chaveli Lopez, B.; Gavalda Esteve, C.; Sarrion Perez, M.G. Dental treatment consideration in the chemotherapy patient. J. Clin. Exp. Dent.?2011, 3, e31–e42.
[15]
Lionel, D.; Christophe, L.; Marc, A.; Jean-Luc, C. Oral mucositis induced by anticancer treatments: Physiopathology and treatments. Ther. Clin. Risk Manag.?2006, 2, 159–168, doi:10.2147/tcrm.2006.2.2.159.
[16]
D?browski, T. Hair loss as a consequence of cancer chemotherapy—Physical methods of prevention. A review of the literature. Contemp. Oncol.?2011, 15, 95–101.
[17]
Naohara, T.; Aono, H.; Maehara, T.; Hirazawa, H.; Matsutomo, S.; Watanabe, Y. Development of Ti-coated ferromagnetic needle adaptable for ablation cancer therapy by high-frequency induction heating. J. Funct. Biomater.?2012, 3, 163–172, doi:10.3390/jfb3010163.
[18]
Furuya, K.; Hamada, L.; Ito, K.; Kasai, H. A new muscle-equivalent phantom for SAR estimation. IEICE Trans. Commun.?1995, E78, 871–873.
[19]
Onishi, T.; Ishido, R.; Takimoto, T.; Saito, K.; Uebayashi, S.; Ito, K. Biological tissue-equivalent agar-based solid phantom and SAR estimation using the thermographic method in the range of 3–6 GHz. IEICE Trans. Commun.?2005, E88-B, 3733–3741, doi:10.1093/ietcom/e88-b.9.3733.
[20]
Naohara, T.; Aono, H.; Hirazawa, H.; Maehara, T.; Watanabe, Y.; Matsutomo, S. Heat generation ability in AC magnetic field of needle-type Ti-coated mild steel for ablation cancer therapy. Int. J. Comput. Math. Electr. Electron. Eng.?2011, 30, 1582–1588, doi:10.1108/03321641111152739.
[21]
Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials; Willey IEEE Press: Hoboken, NJ, USA, 2008; pp. 234–237.
[22]
Yamada, K.; Oda, T.; Hashimoto, S.; Enomoto, T.; Ohkohchi, N.; Ikeda, H.; Yanagihara, H.; Kishimoto, M.; Kita, E.; Tasaki, A.; Satake, M.; Ikehata, Y.; Nagae, H.; Nagano, I.; Takagi, T.; Kanamori, T. Minimally required heat doses for various tumor sizes in induction heating cancer therapy determined by computer simulation using experimental data. Int. J. Hyperthermia?2010, 26, 465–474, doi:10.3109/02656731003681028.