全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A New Algorithm for Identifying Possible Epidemic Sources with Application to the German Escherichia coli Outbreak

DOI: 10.3390/ijgi2010155

Keywords: topological weighted centroid, epidemic out break, E-coli, HUS epidemics

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we describe a recently developed algorithm called Topological Weighted Centroid (TWC). TWC takes locations of an event of interest and analyzes the possible associated dynamics using the ideas of free energy and entropy. This novel mathematical tool has been applied to a real world example, the epidemic outbreak caused by Escherichia coli that occurred in Germany in 2011, to point out the real source of the outbreak. Other four examples of application to other epidemic spreads are described: Chikungunya fever of 2007 in Italy; Foot and mouth disease of 1967 in England; Cholera of 1854 in London; and the Russian influenza of 1889–1890 in Sweden. Comparisons have been made with other already published algorithms: Rossmo Algorithm, NES, LVM, Mexican Prob. The TWC results are significantly superior in comparison with other algorithms according to four independent indexes: distance from the peak, sensitivity, specificity and searching area. They are consistent with the idea that the spread of infectious disease is not random but follows a progression based on inherent, but as yet undiscovered, mathematical laws. The TWC method could provide an additional powerful tool for the investigation of the early stages of an epidemic and novel simulation methods for understanding the process through which a disease is spread.

References

[1]  Buscema, M.; Grossi, E.; Breda, M.; Jefferson, T. Outbreaks source: A new mathematical approach to identify their possible location. Phys. A 2009, 388, 4736–4762, doi:10.1016/j.physa.2009.07.034.
[2]  Buscema, M.; Terzi, S. PST: An evolutionary approach to the problem of multi dimensional scaling. WSEAS Trans. Inform. Sci. Appl. 2006, 3, 1704–1710.
[3]  Buscema, M. The West Nile Virus. In Presented at the Department of Mathematical and Statistical Sciences, University of Colorado, Denver, CO, USA, 2009.
[4]  Buscema, M.; Breda, M.; Grossi, E.; Catzola, L.; Sacco, P.L. Semantics of Point Spaces through the Topological Weighted Centroid and Other Mathematical Quantities—Theory & Applications. In Data Mining Applications Using Artificial Adaptive Systems; Tastle, W., Ed.; Springer: New York, NY, USA, 2012.
[5]  Rossmo, D.K. Geographic Profiling; CRC Press: Boca Raton, FL, USA, 2000.
[6]  Le Comber, S.C.; Rossmo, D.K.; Hassan, A.N.; Fuller, D.O.; Beier, J.C. Geographic profiling as a novel spatial tool for targeting infectious disease control. Int. J. Health Geogr. 2011, doi:10.1186/1476-072X-10-35.
[7]  Stevenson, M.D.; Rossmo, D.K.; Knell, R.J.; Le Comber, S.C. Geographic profiling as a novel spatial tool for targeting the control of invasive species. Ecography 2012, 35, 704–715, doi:10.1111/j.1600-0587.2011.07292.x.
[8]  Buscema, M.; Sacco, P.L.; Grossi, E.; Lodwick, W. Spatiotemporal Mining: A Systematic Approach to Discrete Diffusion Models for Time and Space Extrapolation. In Data Mining Applications Using Artificial Adaptive Systems; Tastle, W., Ed.; Springer: New York, NY, USA, 2012.
[9]  Rezza, G.; Nicoletti, L.; Angelici, R.; Romi, R.; Finarelli, A.C.; Panning, M.; Cordioli, P.; Fortuna, C.; Boros, S.; Solvi, G.; et al. Infection with chikunguya virus in Italy: An outbreak in a temperate region. Lancet 2007, 370, 1840–1846, doi:10.1016/S0140-6736(07)61779-6.
[10]  Reynolds, L.A.; Tansey, E.M. Foot and Mouth Disease: The 1967 Outbreak and ITS AFTERMATH; Wellcome Trust Centre for the History of Medicine at UCL: London, UK, 2001.
[11]  Snow, J. Report on the Cholera Outbreak in the Parish of St. James, Westminster during the Autumn of 1854; Churchill: London, UK, 1984; pp. 97–120.
[12]  Cameron, D.; Iones, I.G.; Snow, J. The broad street pump and modern epidemiology. Int. J. Epidemiol. 1983, 12, 393–396.
[13]  Skog, L.; Hauska, H.; Linde, A. The Russian influenza in Sweden in 1889–90: An example of geographic information system analysis. Eurosurveillance 2008, 13. pii: 19056.
[14]  Levine, N. CrimeStat III—A Spatial Statistical Program for the Analysis of Crime Incident Locations; NCJ 209264; The National Institute of Justice: Washington, DC, USA, 2004; pp. 10.1–10.2.
[15]  Brantingham, P.L.; Brantingham, P.J. Environmental Criminology; Waveland Press Inc.: Prospect Heights, IL, USA, 1981.
[16]  Brantingham, P.L.; Brantingham, P.J. Patterns in Crime; Macmillan: New York, NY, USA, 1984.
[17]  Rossmo, D.K. Target patterns of serial murderers: A methodological model. Amer. J. Crim. Justice 1993, 17, 1–21.
[18]  Canter, D.V.; Larkin, P. The environmental range of serial rapists. J. Environ. Psychol. 1993, 13, 63–69.
[19]  Canter, D.; Tagg, S. Distance estimation in cities. Environ. Behav. 1975, 7, 59–80.
[20]  Canter, D. Mapping Murder: The Secrets of Geographic Profiling; Virgin Publishing: London, UK, 2007.
[21]  Canter, D. Modeling the Home Location of Serial Offenders. In Proceedings of the 3rd Annual International Crime Mapping Research Conference, Orlando, FL, USA, 11–14 December 1999.
[22]  Canter, D.; Coffey, T.; Huntley, M.; Missen, C. Predicting serial killers’ home base using a decision support system. J. Quant. Criminol. 2000, 16, 457–478.
[23]  Buscema, M; Breda, M.; Catzola, G. The Topological Weighted Centroid, and the Semantic of the Physical Space—Theory. In Artificial Adaptive Systems in Medicine; Buscema, M., Grossi, E., Eds.; Bentham: London, UK, 2009; pp. 69–78.
[24]  Grossi, E.; Buscema, M.; Jefferson, T. The Topological Weighted Centroid, and the Semantic of the Physical Space—Application. In Artificial Adaptive Systems in Medicine; Buscema, M., Grossi, E., Eds.; Bentham: London, UK, 2009; pp. 79–89.
[25]  O’Leary, M. A New Mathematical Technique for Geographic Profiling. In Proceedings of The NIJ Conference, Washington, DC, USA, 17–19 June 2006.
[26]  Buscema, M. Pst Cluster, Version 20.1, Semeion Software #34; Semeion: Rome, Italy, 2012.
[27]  Frank, C.; Faber, M.S.; Askar, M.; Bernard, H.; Fruth, A.; Gilsdorf, A.; H?hle, M.; Karch, H.; Krause, G.; Prager, R.; et al. Large and ongoing outbreak of haemolytic uraemic syndrome, Germany May 2011. Eurosurveillance 2011, 16, 2–4.
[28]  SurveStae, Berlin: Robert Koch Institute. German. Available online: http://www3.rki.de/SurvStat (accessed on 24 May 2011).
[29]  Buchholz, U.; Bernard, H.; Werber, D.; Bohmer, M.M.; Remschmidt, C.; Wilking, H.; Delere, Y.; an der Herden, M.; Adlhoch, C.; Dreesman, H.; et al. German outbreak of Escherichia coli O104: H4 associated with sprouts. N. Engl. Med. J. 2011, 365, 1763–1770, doi:10.1056/NEJMoa1106482.
[30]  Buscema, M; Sacco, P.L. Auto-Contractive Maps, the H Function, and the Maximally Regular Graph (MRG): A New Methodology for Data Mining. In Applications of Mathematics in Models, Artificial Neural Networks and Arts; Chapter 11; Capecchi, V., Buscema, M., Contucci, P., D’Amore, B., Eds.; Springer Science+Business Media B.V.: London, UK, 2010; pp. 227–275.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133