|
Vascular Cell 2012
Polysaccharides from astragali radix restore chemical-induced blood vessel loss in zebrafishKeywords: Angiogenesis, Astragali Radix, Polysaccharide, Ultrafiltration, Zebrafish Abstract: Blood vessel loss was induced in both Tg(fli-1a:EGFP)y1 and Tg(fli-1a:nEGFP)y7 embryos by administration of 300 nM VEGFR tyrosine kinase inhibitor II (VRI) for 3 h at 24 hpf (hour post-fertilization). Then, the blood vessel damaged zebrafish were treated with ARPs for 21 h and 45 h after VRI withdrawal. Morphological changes in intersegmental vessels (ISVs) of zebrafish larvae were observed under the fluorescence microscope and measured quantitatively. The rescue effect of ARPs in the zebrafish models was validated by measuring the relative mRNA expressions of Kdrl, Kdr and Flt-1 using real-time PCR.Two polysaccharide fractions, P4 (50000 D < molecular weight & diameter < 0.1 μm) and P5 (molecular diameter > 0.1 μm), isolated from Astragali Radix by ultrafiltration, produced a significant and dose-dependent recovery in VRI-induced blood vessel loss in zebrafish. Furthermore, the down-regulation of Flk-1 and Flt-1 mRNA expression induced by VRI was reversed by treatment with P4.The present study demonstrates that P4 isolated from Astragali Radix reduces VRI-induced blood vessel loss in zebrafish. These findings support the hypothesis that polysaccharides are one of the active constituents in Astragali Radix, contributing to its beneficial effect on treatment of diseases associated with a deficiency in angiogenesis.Angiogenesis plays an important role in a wide range of physiological processes, such as wound healing and fetal development. However, many diseases such as cancer, chronic inflammatory disease, diabetic retinopathy, macular degeneration and cardiovascular disorders are associated with dysregulation of angiogenesis, in which blood vessel formation is either excessive or insufficient. Improvement of endothelial cell function and the enhancement of angiogenesis after critical cardiac and skeletal muscle ischemia is critical, as neovascularization of ischemic tissues may be sufficient to preserve tissue integrity and/or function, and thus is therapeutic. Polys
|