全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Diagnostics  2013 

Performance Evaluation of Fast Microfluidic Thermal Lysis of Bacteria for Diagnostic Sample Preparation

DOI: 10.3390/diagnostics3010105

Keywords: thermal lysis, microfluidics, sample preparation, on-chip diagnostics, lab-on-a-chip, bacterial detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

Development of new diagnostic platforms that incorporate lab-on-a-chip technologies for portable assays is driving the need for rapid, simple, low cost methods to prepare samples for downstream processing or detection. An important component of the sample preparation process is cell lysis. In this work, a simple microfluidic thermal lysis device is used to quickly release intracellular nucleic acids and proteins without the need for additional reagents or beads used in traditional chemical or mechanical methods (e.g., chaotropic salts or bead beating). On-chip lysis is demonstrated in a multi-turn serpentine microchannel with external temperature control via an attached resistive heater. Lysis was confirmed for Escherichia coli by fluorescent viability assay, release of ATP measured with bioluminescent assay, release of DNA measured by fluorometry and qPCR, as well as bacterial culture. Results comparable to standard lysis techniques were achievable at temperatures greater than 65 °C and heating durations between 1 and 60 s.

References

[1]  Gubala, V.; Harris, L.F.; Ricco, A.J.; Tan, M.X.; Williams, D.E. Point of care diagnostics: Status and future. Anal. Chem. 2011, 84, 487–515.
[2]  Mabey, D.; Peeling, R.W.; Ustianowski, A.; Perkins, M.D. Diagnostics for the developing world. Nat. Rev. Microbiol. 2004, 2, 231–240, doi:10.1038/nrmicro841.
[3]  Yager, P.; Edwards, T.; Fu, E.; Helton, K.; Nelson, K.; Tam, M.R.; Weigl, B.H. Microfluidic diagnostic technologies for global public health. Nature 2006, 442, 412–418.
[4]  Kim, J.; Johnson, M.; Hill, P.; Gale, B.K. Microfluidic sample preparation: Cell lysis and nucleic acid purification. Integr. Biol. 2009, 1, 574–586, doi:10.1039/b905844c.
[5]  Brown, R.B.; Audet, J. Current techniques for single-cell lysis. J. R. Soc. Interface 2008, 5, S131–S138, doi:10.1098/rsif.2008.0009.focus.
[6]  Marentis, T.C.; Kusler, B.; Yaralioglu, G.G.; Liu, S.; Haeggstrom, E.O.; Khuri-Yakub, B.T. Microfluidic sonicator for real-time disruption of eukaryotic cells and bacterial spores for DNA analysis. Ultrasound Med. Biol. 2005, 31, 1265–1277, doi:10.1016/j.ultrasmedbio.2005.05.005.
[7]  Taylor, M.T.; Belgrader, P.; Furman, B.J.; Pourahmadi, F.; Kovacs, G.T.; Northrup, M.A. Lysing bacterial spores by sonication through a flexible interface in a microfluidic system. Anal. Chem. 2001, 73, 492–496.
[8]  Kim, J.; Jang, S.H.; Jia, G.; Zoval, J.V.; Da Silva, N.A.; Madou, M.J. Cell lysis on a microfluidic CD (compact disc). Lab Chip 2004, 4, 516–522, doi:10.1039/b401106f.
[9]  Hwang, K.-Y.; Kwon, S.H.; Jung, S.-O.; Lim, H.-K.; Jung, W.-J.; Park, C.-S.; Kim, J.-H.; Suh, K.-Y.; Huh, N. Miniaturized bead-beating device to automate full DNA sample preparation processes for Gram-positive bacteria. Lab Chip 2011, 11, 3649–3655.
[10]  Wang, S.; Singh, A.K.; Senapati, D.; Neely, A.; Yu, H.; Ray, P.C. Rapid colorimetric identification and targeted photothermal lysis of Salmonella bacteria by using bioconjugated oval-shaped gold nanoparticles. Chemistry 2010, 16, 5600–5606.
[11]  Cheong, K.H.; Yi, D.K.; Lee, J.G.; Park, J.M.; Kim, M.J.; Edel, J.B.; Ko, C. Gold nanoparticles for one step DNA extraction and real-time PCR of pathogens in a single chamber. Lab Chip 2008, 8, 810–813, doi:10.1039/b717382b.
[12]  Wang, H.Y.; Bhunia, A.K.; Lu, C. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage. Biosens. Bioelectron. 2006, 22, 582–588, doi:10.1016/j.bios.2006.01.032.
[13]  Lee, H.J.; Kim, J.H.; Lim, H.K.; Cho, E.C.; Huh, N.; Ko, C.; Park, J.C.; Choi, J.W.; Lee, S.S. Electrochemical cell lysis device for DNA extraction. Lab Chip 2010, 10, 626–633, doi:10.1039/b916606h.
[14]  Bao, N.; Lu, C. A microfluidic device for physical trapping and electrical lysis of bacterial cells. Appl. Phys. Lett. 2008, 92, 1–3.
[15]  De la Rosa, C.; Tilley, P.A.; Fox, J.D.; Kaler, K.V. Microfluidic device for dielectrophoresis manipulation and electrodisruption of respiratory pathogen Bordetella pertussis. IEEE Trans. Biomed. Eng. 2008, 55, 2426–2432, doi:10.1109/TBME.2008.923148.
[16]  Wang, H.Y.; Banada, P.P.; Bhunia, A.K.; Lu, C. Rapid electrical lysis of bacterial cells in a microfluidic device. Methods Mol. Biol. 2007, 385, 23–35, doi:10.1007/978-1-59745-426-1_3.
[17]  Lu, K.Y.; Wo, A.M.; Lo, Y.J.; Chen, K.C.; Lin, C.M.; Yang, C.R. Three dimensional electrode array for cell lysis via electroporation. Biosens. Bioelectron. 2006, 22, 568–574, doi:10.1016/j.bios.2006.08.009.
[18]  Lin, Y.-H.; Lee, G.-B. An integrated cell counting and continuous cell lysis device using an optically induced electric field. Sens. Actuator. B 2010, 145, 854–860, doi:10.1016/j.snb.2010.01.019.
[19]  Chen, D.; Mauk, M.; Qiu, X.; Liu, C.; Kim, J.; Ramprasad, S.; Ongagna, S.; Abrams, W.R.; Malamud, D.; Corstjens, P.L.; Bau, H.H. An integrated, self-contained microfluidic cassette for isolation, amplification and detection of nucleic acids. Biomed. Microdevices 2010, 12, 705–719, doi:10.1007/s10544-010-9423-4.
[20]  Salazar, O.; Asenjo, J.A. Enzymatic lysis of microbial cells. Biotechnol. Lett. 2007, 29, 985–994.
[21]  Schilling, E.A.; Kamholz, A.E.; Yager, P. Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay. Anal. Chem. 2002, 74, 1798–1804, doi:10.1021/ac015640e.
[22]  Mahalanabis, M.; Al-Muayad, H.; Kulinski, M.D.; Altman, D.; Klapperich, C.M. Cell lysis and DNA extraction of gram-positive and gram-negative bacteria from whole blood in a disposable microfluidic chip. Lab Chip 2009, 9, 2811–2817, doi:10.1039/b905065p.
[23]  Hukari, K.W.; Patel, K.D.; Renzi, R.F.; West, J.A. An ultra-high temperature flow-through capillary device for bacterial spore lysis. Electrophoresis 2010, 31, 2804–2812.
[24]  Abramoff, M.D.; Magalhaes, P.J.; Ram, S.J. Image processing with image. Biophotonics Int. 2004, 11, 36–42.
[25]  Miller, D.N.; Bryant, J.E.; Madsen, E.L.; Ghiorse, W.C. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 1999, 65, 4715–4724.
[26]  De Lipthay, J.R.; Enzinger, C.; Johnsen, K.; Aamand, J.; Sorensen, S.J. Impact of DNA extraction method on bacterial community composition measured by denaturing gradient gel electrophoresis. Soil Biol. Biochem. 2004, 36, 1607–1614, doi:10.1016/j.soilbio.2004.03.011.
[27]  Packard, M.M.; Shusteff, M.; Alocilja, E.C. Microfluidic-based amplification-free bacterial DNA detection by dielectrophoretic concentration and fluorescent resonance energy transfer assisted in situ hybridization (FRET-ISH). Biosensors 2012, 2, 405–416, doi:10.3390/bios2040405.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133