|
International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies 2012
Experimental and Numerical Investigation of Shock/Turbulence Interaction by Hot-wire TechniqueKeywords: Shock Wave , Turbulence , Hot-wire , Turbulence grid , Length Scale Abstract: In the present paper, an experimental investigation has been carried out to observe the amplification of turbulence intensity after shock/turbulence interaction by hot-wire technique. The hot wires are installed in the wake of turbulent grids to measure turbulence fluctuations before and after the reflected shock interaction with turbulence. It is observed that the turbulence fluctuations for less open area of the grid plate are higher than the turbulence fluctuations for more open area of the grid plate. For numerical computations, grid plate of 49.5 % open area is used. The average longitudinal velocity line obtained from experimental velocity data simulates with numerical results properly and in some places, 5-7 % deviations are observed with numerical results. All the simulation results indicate that the present code with turbulence model is working properly. The substantial amplification of pressure fluctuations obtained from experiment is observed after interaction. The dissipation rate of turbulent kinetic energy (TKE) and the levels of length scales are determined numerically. It is observed that the dissipation rate of TKE and the levels of length scales decrease after shock/turbulence interaction.
|