全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Surviving in Cyberspace: A Game Theoretic Approach

DOI: 10.4304/jcm.7.6.436-450

Keywords: Bayesian game , binary voting , cyberspace , fault-tolerant networks , fight-through , network security , survivability

Full-Text   Cite this paper   Add to My Lib

Abstract:

As information systems become ever more complex and the interdependence of these systems increases, a mission-critical system should have the fight-through ability to sustain damage yet survive with mission assurance in cyberspace. To satisfy this requirement, in this paper we propose a game theoretic approach to binary voting with a weighted majority to aggregate observations among replicated nodes. Nodes are of two types: they either vote truthfully or are malicious and thus lie. Voting is strategically performed based on a node’s belief about the percentage of compromised nodes in the system. Voting is cast as a stage game model that is a Bayesian Zero-sum game. In the resulting Bayesian Nash equilibrium, if more than a critical proportion of nodes are compromised, their collective decision is only 50% reliable; therefore, no information is obtained from voting. We overcome this by formalizing a repeated game model that guarantees a highly reliable decision process even though nearly all nodes are compromised. A survival analysis is performed to derive the total time of mission survival for both a one-shot game and the repeated game. Mathematical proofs and simulations support our model.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133