Gliomas are the most common primary central nervous system tumors with a dismal prognosis. Despite recent advances in surgery, radiotherapy, and chemotherapy, current treatment regimens have a modest survival benefit. A crucial challenge is to deliver drugs effectively to invasive glioma cells residing in a sanctuary within the central nervous system. New therapies are essential, and oligonucleotide-based approaches, including antisense, microRNAs, small interfering RNAs, and nucleic acid aptamers, may provide a viable strategy. Thanks to their unique characteristics (low size, good affinity for the target, no immunogenicity, chemical structures that can be easily modified to improve their in vivo applications), these molecules may represent a valid alternative to antibodies particularly to overcome challenges presented by the blood-brain barrier. Here we will discuss recent results on the use of oligonucleotides that will hopefully provide new effective treatment for gliomas. 1. Introduction Glioma is the most common primary brain tumor, generally characterized by highly infiltrative nature, high malignancy, and poor clinical outcome. Despite great advances in surgical techniques, radiotherapy, and chemotherapy, the prognosis of this tumor remains poor [1, 2]. Histologically gliomas are classified as astrocytomas, oligodendrogliomas, or ependymomas depending on cell morphology [3–7]. Genomic analysis of gliomas has revealed different subtypes that show distinct patterns of mutations, copy number alterations, and gene expression [8, 9]. On the basis of the grade of malignancy, as established by the World Health Organization [2], they can be further categorized as low grade (grade I and grade II) and high grade gliomas (grade III and grade IV). Grade I tumors are relatively benign and show the best prognosis. Grade II tumors contain some anaplastic cells and can progress to higher grade tumors. Grade III tumors show a high degree of anaplasia and mitotic activity and are often rapidly fatal. The most aggressive type of glioma is the grade IV astrocytoma or glioblastoma multiforme (GBM). This is a highly anaplastic and malignant tumor which is almost always fatal because of its resistance to radio—and chemotherapy. To date, antibody-based approaches have been developed for in vivo applications but, in most cases, adequate sensitivity has not yet been reached; they show toxicity in vivo and are not able to efficiently cross the blood-brain barrier (BBB). Promising alternative approach to antibodies is now represented by RNA and DNA oligonucleotides,
References
[1]
H. Ohgaki, P. Dessen, B. Jourde et al., “Genetic pathways to glioblastoma: a population-based study,” Cancer Research, vol. 64, no. 19, pp. 6892–6899, 2004.
[2]
D. N. Louis, H. Ohgaki, O. D. Wiestler et al., “The 2007 WHO classification of tumours of the central nervous system,” Acta Neuropathologica, vol. 114, no. 2, pp. 97–109, 2007.
[3]
D. N. Louis, “Molecular pathology of malignant gliomas,” Annual Review of Pathology, vol. 1, pp. 97–117, 2006.
[4]
W. P. Mason and J. G. Cairncross, “Invited article: the expanding impact of molecular biology on the diagnosis and treatment of gliomas,” Neurology, vol. 71, no. 5, pp. 365–373, 2008.
[5]
R. D. Rao, J. H. Uhm, S. Krishnan, and C. D. James, “Genetic and signaling pathway alterations in glioblastoma: relevance to novel targeted therapies.,” Frontiers in Bioscience, vol. 8, pp. e270–e280, 2003.
[6]
S. Sathornsumetee and J. N. Rich, “Designer therapies for glioblastoma multiforme,” Annals of the New York Academy of Sciences, vol. 1142, pp. 108–132, 2008.
[7]
P. Y. Wen and S. Kesari, “Malignant gliomas in adults,” New England Journal of Medicine, vol. 359, no. 5, pp. 492–507, 2008.
[8]
G. Riddick and H. A. Fine, “Integration and analysis of genome-scale data from gliomas,” Nature Reviews Neurology, vol. 7, no. 8, pp. 439–450, 2011.
[9]
R. G. W. Verhaak, K. A. Hoadley, E. Purdom et al., “Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1,” Cancer Cell, vol. 17, no. 1, pp. 98–110, 2010.
[10]
G. Caruso, M. Caffo, G. Raudino, C. Alafaci, F. M. Salpietro, and F. Tomasello, “Antisense oligonucleotides as an innovative therapeutic strategy in the treatment of high-grade gliomas,” Recent Patents on CNS Drug Discovery, vol. 5, no. 1, pp. 53–69, 2010.
[11]
P. Hau, P. Jachimczak, and U. Bogdahn, “Treatment of malignant gliomas with TGF-β2 antisense oligonucleotides,” Expert Review of Anticancer Therapy, vol. 9, no. 11, pp. 1663–1674, 2009.
[12]
J. Chelliserrykattil and A. D. Ellington, “Evolution of a T7 RNA polymerase variant that transcribes 2′-O-methyl RNA,” Nature Biotechnology, vol. 22, no. 9, pp. 1155–1160, 2004.
[13]
P. E. Burmeister, S. D. Lewis, R. F. Silva et al., “Direct in vitro selection of a 2′-O-methyl aptamer to VEGF,” Chemistry and Biology, vol. 12, no. 1, pp. 25–33, 2005.
[14]
S. Shukla, C. S. Sumaria, and P. I. Pradeepkumar, “Exploring chemical modifications for siRNA therapeutics: a structural and functional outlook,” ChemMedChem, vol. 5, no. 3, pp. 328–349, 2010.
[15]
A. D. Keefe and S. T. Cload, “SELEX with modified nucleotides,” Current Opinion in Chemical Biology, vol. 12, no. 4, pp. 448–456, 2008.
[16]
K. S. Schmidt, S. Borkowski, J. Kurreck et al., “Application of locked nucleic acids to improve aptamer in vivo stability and targeting function,” Nucleic Acids Research, vol. 32, no. 19, pp. 5757–5765, 2004.
[17]
K. Fluiter, O. R. Mook, and F. Baas, “The therapeutic potential of LNA-modified siRNAs: reduction of off-target effects by chemical modification of the siRNA sequence.,” Methods in Molecular Biology, vol. 487, pp. 189–203, 2009.
[18]
R. N. Veedu and J. Wengel, “Locked nucleic acids: promising nucleic acid analogs for therapeutic applications,” Chemistry and Biodiversity, vol. 7, no. 3, pp. 536–542, 2010.
[19]
J. M. Healy, S. D. Lewis, M. Kurz et al., “Pharmacokinetics and biodistribution of novel aptamer compositions,” Pharmaceutical Research, vol. 21, no. 12, pp. 2234–2246, 2004.
[20]
E. W. M. Ng, D. T. Shima, P. Calias, E. T. Cunningham, D. R. Guyer, and A. P. Adamis, “Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease,” Nature Reviews Drug Discovery, vol. 5, no. 2, pp. 123–132, 2006.
[21]
M. Sioud, “Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: a central role for 2′-hyroxyl uridines in immune responses,” European Journal of Immunology, vol. 36, no. 5, pp. 1222–1230, 2006.
[22]
M. Robbins, A. Judge, and I. MacLachlan, “SiRNA and innate immunity,” Oligonucleotides, vol. 19, no. 2, pp. 89–101, 2009.
[23]
A. D. Judge, G. Bola, A. C. H. Lee, and I. MacLachlan, “Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo,” Molecular Therapy, vol. 13, no. 3, pp. 494–505, 2006.
[24]
D. Yu, D. Wang, F. G. Zhu et al., “Modifications incorporated in CpG motifs of oligodeoxynucleotides lead to antagonist activity of toll-like receptors 7 and 9,” Journal of Medicinal Chemistry, vol. 52, no. 16, pp. 5108–5114, 2009.
[25]
L. L. Rubin and J. M. Staddon, “The cell biology of the blood-brain barrier,” Annual Review of Neuroscience, vol. 22, pp. 11–28, 1999.
[26]
W. M. Pardridge, “Drug and gene targeting to the brain with molecular Trojan horses,” Nature Reviews Drug Discovery, vol. 1, no. 2, pp. 131–139, 2002.
[27]
R. J. Boado, Y. Zhang, Y. Zhang, C. F. Xia, and W. M. Pardridge, “Fusion antibody for Alzheimer's disease with bidirectional transport across the blood-brain barrier and Aβ fibril disaggregation,” Bioconjugate Chemistry, vol. 18, no. 2, pp. 447–455, 2007.
[28]
W. M. Pardridge, “Blood-brain barrier genomics,” Stroke, vol. 38, no. 2, pp. 686–690, 2007.
[29]
Y. Zhang, Y. F. Zhang, J. Bryant, A. Charles, R. J. Boado, and W. M. Pardridge, “Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer,” Clinical Cancer Research, vol. 10, no. 11, pp. 3667–3677, 2004.
[30]
C. H. B. Chen, K. R. Dellamaggiore, C. P. Ouellette et al., “Aptamer-based endocytosis of a lysosomal enzyme,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 41, pp. 15908–15913, 2008.
[31]
H. Yang, “Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis,” Pharmaceutical Research, vol. 27, no. 9, pp. 1759–1771, 2010.
[32]
L. Martin-Banderas, M. A. Holgado, J. L. Venero, J. Alvarez-Fuentes, and M. Fernández-Arévalo, “Nanostructures for drug delivery to the brain,” Current Medicinal Chemistry, vol. 18, no. 34, pp. 5303–5321, 2011.
[33]
L. Biddlestone-Thorpe, N. Marchi, K. Guo, et al., “Nanomaterial-mediated CNS delivery of diagnostic and therapeutic agents,” Advanced Drug Delivery Reviews. In press.
[34]
H. Xin, X. Sha, X. Jiang, et al., “The brain targeting mechanism of Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles,” Biomaterials, vol. 33, no. 5, pp. 1673–1681, 2012.
[35]
Y. C. Chen, W. Y. Hsieh, W. F. Lee, and D. T. Zeng, “Effects of surface modification of PLGA-PEG-PLGA nanoparticles on loperamide delivery efficiency across the blood-brain barrier,” Journal of Biomaterials Applications. In press.
[36]
L. Cerchia and V. de Franciscis, “Targeting cancer cells with nucleic acid aptamers,” Trends in Biotechnology, vol. 28, no. 10, pp. 517–525, 2010.
[37]
K. W. Thiel and P. H. Giangrande, “Intracellular delivery of RNA-based therapeutics using aptamers,” Therapeutic Delivery, vol. 1, no. 6, pp. 849–861, 2010.
[38]
J. Zhou and J. J. Rossi, “Aptamer-targeted cell-specific RNA interference,” Silence, vol. 1, no. 1, article no. 4, 2010.
[39]
J. Krol, I. Loedige, and W. Filipowicz, “The widespread regulation of microRNA biogenesis, function and decay,” Nature Reviews Genetics, vol. 11, no. 9, pp. 597–610, 2010.
[40]
A. Esquela-Kerscher and F. J. Slack, “Oncomirs - MicroRNAs with a role in cancer,” Nature Reviews Cancer, vol. 6, no. 4, pp. 259–269, 2006.
[41]
S. A. Ciafre, S. Galardi, A. Mangiola, et al., “Extensive modulation of a set of microRNAs in primary glioblastoma,” Biochemical and Biophysical Research Communications, vol. 334, no. 4, pp. 1351–1358, 2005.
[42]
E. Lages, A. Guttin, M. E. Atifi et al., “MicroRNA and target protein patterns reveal physiopathological features of glioma subtypes,” PLoS One, vol. 6, no. 5, Article ID e20600, 2011.
[43]
J. A. Chan, A. M. Krichevsky, and K. S. Kosik, “MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells,” Cancer Research, vol. 65, no. 14, pp. 6029–6033, 2005.
[44]
T. Papagiannakopoulos, A. Shapiro, and K. S. Kosik, “MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells,” Cancer Research, vol. 68, no. 19, pp. 8164–8172, 2008.
[45]
A. Conti, M. Aguennouz, D. La Torre et al., “miR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors,” Journal of Neuro-Oncology, vol. 93, no. 3, pp. 325–332, 2009.
[46]
G. Gabriely, T. Wurdinger, S. Kesari et al., “MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators,” Molecular and Cellular Biology, vol. 28, no. 17, pp. 5369–5380, 2008.
[47]
Y. Chen, W. Liu, T. Chao et al., “MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G,” Cancer Letters, vol. 272, no. 2, pp. 197–205, 2008.
[48]
C. Quintavalle, M. Garofalo, C. Zanca et al., “miR-221/222 overexpession in human glioblastoma increases invasiveness by targeting the protein phosphate PTPμ,” Oncogene, vol. 31, pp. 858–868, 2011.
[49]
C. Le Sage, R. Nagel, D. A. Egan et al., “Regulation of the p27Kip1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation,” EMBO Journal, vol. 26, no. 15, pp. 3699–3708, 2007.
[50]
D. Schraivogel, L. Weinmann, D. Beier, et al., “CAMTA1 is a novel tumour suppressor regulated by miR-9/9* in glioblastoma stem cells,” The EMBO Journal, vol. 30, no. 20, pp. 4309–4322, 2011.
[51]
D. Nass, S. Rosenwald, E. Meiri et al., “MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors,” Brain Pathology, vol. 19, no. 3, pp. 375–383, 2009.
[52]
A. N. Packer, Y. Xing, S. Q. Harper, L. Jones, and B. L. Davidson, “The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease,” Journal of Neuroscience, vol. 28, no. 53, pp. 14341–14346, 2008.
[53]
J. Silber, D. A. Lim, C. Petritsch et al., “miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells,” BMC Medicine, vol. 6, article no. 14, 2008.
[54]
B. Kefas, J. Godlewski, L. Comeau et al., “microRNA-7 inhibits the epidermal growth factor receptor and the akt pathway and is down-regulated in glioblastoma,” Cancer Research, vol. 68, no. 10, pp. 3566–3572, 2008.
[55]
L. F. Sempere, S. Freemantle, I. Pitha-Rowe, E. Moss, E. Dmitrovsky, and V. Ambros, “Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation.,” Genome Biology, vol. 5, no. 3, article R13, 2004.
[56]
J. Godlewski, M. O. Nowicki, A. Bronisz et al., “Targeting of the Bmi-1 oncogene/stem cell renewal factor by MicroRNA-128 inhibits glioma proliferation and self-renewal,” Cancer Research, vol. 68, no. 22, pp. 9125–9130, 2008.
[57]
L. Shi, Z. Cheng, J. Zhang et al., “hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells,” Brain Research, vol. 1236, pp. 185–193, 2008.
[58]
O. Slaby, R. Lakomy, P. Fadrus et al., “MicroRNA-181 family predicts response to concomitant chemoradiotherapy with temozolomide in glioblastoma patients.,” Neoplasma, vol. 57, no. 3, pp. 264–269, 2010.
[59]
K. Ujifuku, N. Mitsutake, S. Takakura et al., “MiR-195, miR-455-3p and miR-10a* are implicated in acquired temozolomide resistance in glioblastoma multiforme cells,” Cancer Letters, vol. 296, no. 2, pp. 241–248, 2010.
[60]
M. F. Corsten, R. Miranda, R. Kasmieh, A. M. Krichevsky, R. Weissleder, and K. Shah, “MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell-delivered S-TRAIL in human gliomas,” Cancer Research, vol. 67, no. 19, pp. 8994–9000, 2007.
[61]
S. M. Elbashir, W. Lendeckel, and T. Tuschl, “RNA interference is mediated by 21- and 22-nucleotide RNAs,” Genes and Development, vol. 15, no. 2, pp. 188–200, 2001.
[62]
M. Sioud, “Promises and challenges in developing RNAi as a research tool and therapy,” Methods in Molecular Biology, vol. 703, pp. 173–187, 2011.
[63]
D. Guo, B. Wang, F. Han, and T. Lei, “RNA interference therapy for glioblastoma,” Expert Opinion on Biological Therapy, vol. 10, no. 6, pp. 927–936, 2010.
[64]
R. Zukiel, S. Nowak, E. Wyszko et al., “Suppression of human brain tumor with interference RNA specific for tenascin-C,” Cancer Biology and Therapy, vol. 5, no. 8, pp. 1002–1007, 2006.
[65]
E. Wyszko, K. Rolle, S. Nowak et al., “A multivariate analysis of patients with brain tumors treated with atn-rna,” Acta Poloniae Pharmaceutica, vol. 65, no. 6, pp. 677–684, 2008.
[66]
S. Behrem, K. Zarkovi?, N. Eskinja, and N. Jonji?, “Distribution pattern of tenascin-C in glioblastoma: correlation with angiogenesis and tumor cell proliferation,” Pathology & Oncology Research, vol. 11, no. 4, pp. 229–235, 2005.
[67]
S. P. Mathupala, M. Guthikonda, and A. E. Sloan, “RNAi based approaches to the treatment of malignant glioma,” Technology in Cancer Research and Treatment, vol. 5, no. 3, pp. 261–269, 2006.
[68]
S. P. Mathupala, “Delivery of small-interfering RNA (siRNA) to the brain,” Expert Opinion on Therapeutic Patents, vol. 19, no. 2, pp. 137–140, 2009.
[69]
D. Bumcrot, M. Manoharan, V. Koteliansky, and D. W. Y. Sah, “RNAi therapeutics: a potential new class of pharmaceutical drugs,” Nature Chemical Biology, vol. 2, no. 12, pp. 711–719, 2006.
[70]
C. F. Xia, Y. Zhang, Y. Zhang, R. J. Boado, and W. M. Pardridge, “Intravenous siRNA of brain cancer with receptor targeting and avidin-biotin technology,” Pharmaceutical Research, vol. 24, no. 12, pp. 2309–2316, 2007.
[71]
M. Grzelinski, B. Urban-Klein, T. Martens et al., “RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts,” Human Gene Therapy, vol. 17, no. 7, pp. 751–766, 2006.
[72]
K. K. Jain, “Use of nanoparticles for drug delivery in glioblastoma multiforme,” Expert Review of Neurotherapeutics, vol. 7, no. 4, pp. 363–372, 2007.
[73]
X. L. Wang, R. Xu, X. Wu, D. Gillespie, R. Jensen, and Z. R. Lu, “Targeted systemic delivery of a therapeutic siRNA with a multifunctional carrier controls tumor proliferation in mice,” Molecular Pharmaceutics, vol. 6, no. 3, pp. 738–746, 2009.
[74]
L. Li, L. Yang, D. A. Scudiero et al., “Development of recombinant adeno-associated virus vectors carrying small interfering RNA (shHec1)-mediated depletion of kinetochore Hec1 protein in tumor cells,” Gene Therapy, vol. 14, no. 10, pp. 814–827, 2007.
[75]
O. Saydam, D. L. Glauser, I. Heid et al., “Herpes simplex virus 1 amplicon vector-mediated siRNA targeting epidermal growth factor receptor inhibits growth of human glioma cells in vivo,” Molecular Therapy, vol. 12, no. 5, pp. 803–812, 2005.
[76]
O. Saydam, N. Saydam, D. L. Glauser et al., “HSV-1 amplicon-mediated post-transcriptional inhibition of Rad51 sensitizes human glioma cells to ionizing radiation,” Gene Therapy, vol. 14, no. 15, pp. 1143–1151, 2007.
[77]
N. Manjunath, H. Wu, S. Subramanya, and P. Shankar, “Lentiviral delivery of short hairpin RNAs,” Advanced Drug Delivery Reviews, vol. 61, no. 9, pp. 732–745, 2009.
[78]
N. Kock, R. Kasmieh, R. Weissledery, and K. Shah, “Tumor therapy mediated by lentiviral expression of shBcl-2 and S-TRAIL1,” Neoplasia, vol. 9, no. 5, pp. 435–442, 2007.
[79]
L. Cerchia, P. H. Giangrande, J. O. McNamara, and V. de Franciscis, “Cell-specific aptamers for targeted therapies,” Methods in Molecular Biology, vol. 535, no. 1, pp. 59–78, 2009.
[80]
C. L. Esposito, S. Catuogno, V. de Franciscis, and L. Cerchia, “New insight into clinical development of nucleic acid aptamers,” Discovery Medicine, vol. 11, no. 61, pp. 487–496, 2011.
[81]
A. D. Keefe, S. Pai, and A. Ellington, “Aptamers as therapeutics,” Nature Reviews Drug Discovery, vol. 9, no. 7, pp. 537–550, 2010.
[82]
K. W. Thiel and P. H. Giangrande, “Therapeutic applications of DNA and RNA aptamers,” Oligonucleotides, vol. 19, no. 3, pp. 209–222, 2009.
[83]
B. J. Hicke, C. Marion, Y. F. Chang et al., “Tenascin-C aptamers are generated using tumor cells and purified protein,” Journal of Biological Chemistry, vol. 276, no. 52, pp. 48644–48654, 2001.
[84]
D. A. Daniels, H. Chen, B. J. Hicke, K. M. Swiderek, and L. Gold, “A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15416–15421, 2003.
[85]
B. J. Hicke, A. W. Stephens, T. Gould et al., “Tumor targeting by an aptamer,” Journal of Nuclear Medicine, vol. 47, no. 4, pp. 668–678, 2006.
[86]
M. Blank, T. Weinschenk, M. Priemer, and H. Schluesener, “Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels: selective targeting of endothelial regulatory protein pigpen,” Journal of Biological Chemistry, vol. 276, no. 19, pp. 16464–16468, 2001.
[87]
L. Cerchia, C. L. Esposito, A. H. Jacobs, B. Tavitian, and V. de Franciscis, “Differential SELEX in human glioma cell lines,” PLoS One, vol. 4, no. 11, Article ID e7971, 2009.
[88]
L. Cerchia, F. Ducongé, C. Pestourie et al., “Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase.,” PLoS Biology, vol. 3, no. 4, article e123, 2005.
[89]
N. E. Hynes and H. A. Lane, “ERBB receptors and cancer: the complexity of targeted inhibitors,” Nature Reviews Cancer, vol. 5, no. 5, pp. 341–354, 2005.
[90]
N. Li, T. Larson, H. H. Nguyen, K. V. Sokolov, and A. D. Ellington, “Directed evolution of gold nanoparticle delivery to cells,” Chemical Communications, vol. 46, no. 3, pp. 392–394, 2010.
[91]
Y. Wan, Y. T. Kim, N. Li et al., “Surface-immobilized aptamers for cancer cell isolation and microscopic cytology,” Cancer Research, vol. 70, no. 22, pp. 9371–9380, 2010.
[92]
N. Li, H. H. Nguyen, M. Byrom, and A. D. Ellington, “Inhibition of cell proliferation by an anti-egfr aptamer,” PLoS One, vol. 6, no. 6, Article ID e20299, 2011.
[93]
C. L. Esposito, D. Passaro, I. Longobardo, et al., “A neutralizing RNA aptamer against EGFR causes selective apoptotic cell death,” PLoS One, vol. 6, no. 9, Article ID e24071, 2011.
[94]
Y. Liu, C. T. Kuan, J. Mi et al., “Aptamers selected against the unglycosylated EGFRvIII ectodomain and delivered intracellularly reduce membrane-bound EGFRvIII and induce apoptosis,” Biological Chemistry, vol. 390, no. 2, pp. 137–144, 2009.
[95]
J. O. McNamara II, E. R. Andrechek, Y. Wang et al., “Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras,” Nature Biotechnology, vol. 24, no. 8, pp. 1005–1015, 2006.
[96]
J. P. Dassie, X. Y. Liu, G. S. Thomas et al., “Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors,” Nature Biotechnology, vol. 27, no. 9, pp. 839–846, 2009.
[97]
J. Zhou, H. Li, S. Li, J. Zaia, and J. J. Rossi, “Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy,” Molecular Therapy, vol. 16, no. 8, pp. 1481–1489, 2008.
[98]
J. Zhou, P. Swiderski, H. Li et al., “Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells,” Nucleic Acids Research, vol. 37, no. 9, pp. 3094–3109, 2009.
[99]
C. P. Neff, J. Zhou, L. Remling et al., “An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4+ T cell decline in humanized mice,” Science Translational Medicine, vol. 3, no. 66, Article ID 66ra6, 2011.