|
Antimetastatic therapy targeting aberrant sialylation profiles in cancer cellsDOI: 10.4081/dts.2011.e12 Keywords: sialic acid , neuraminidic acids , neoplasm metastases , anticancer therapy , neoplasm targeting , probimane , sialylation , glycosylation , cancer chemotherapy , cancer biology , glycobiology Abstract: Neoplasm metastases involve a fixed cascade of pathological processes, and are responsible for more than 60% cancer deaths worldwide and can only be controlled or inhibited by drugs now. Antimetastatic drugs targeting aberrantly sialylated in tumors have involved about a quarter of a century and might be a future therapeutic option apart from currently utilized antimetastatic drugs, such as antivascular and matrix metalloproteinase (MMP) inhibitors. Since neoplasm tissues often manifest high levels of sialic acids and sialyl antigens or glycoligands, and some types of sialic acid analogue, such as N-glycolylneuraminic acid (Nau5Gc) occurred in most tumor tissues, is absent in common humans, more attentions are needed to work with new therapeutic approaches to target these changes. Previously preliminary data have shown some compounds that inhibit some pathways of sialic acids can inhibit the tumor metastasis in vitro and tumor metastasis in experimental animal models. This type of pharmacological work can be helped by glycome investigations in order to deep understanding their mechanisms. As the central dogma of glycobiology is still unknown, some fundamental questions related to carbohydrate itself are even more welcoming and decisive to our understanding to nature of cancer. These types of work also need mathematical analysis of data. In this review, we will document and discuss the latest experimental therapeutic data and their clinical significance between cancer pathological profiles and therapeutics benefits.
|