|
MicroRNA profiling reveals age-dependent differential expression of nuclear factor κB and mitogen-activated protein kinase in adipose and bone marrow-derived human mesenchymal stem cellsDOI: 10.1186/scrt90 Abstract: Human ASCs and BMSCs from young and old donors were cultured, and total RNA was isolated. The miRNA fraction was enriched and used to determine the expression profile of miRNA in young and old donor MSCs. Based on miRNA expression, differences in donor MSCs were further investigated by using differentiation assays, Western blot, immunocytochemistry, and bioinformatics.Biologic aging demonstrated reduced osteogenic and adipogenic potential in ASCs isolated from older donors, whereas cell size, complexity, and cell-surface markers remained intact with aging. Analysis of miRNA profiles revealed that small subsets of active miRNAs changed secondary to aging. Evaluation of miRNA showed significantly decreased levels of gene expression of inhibitory kappa B kinase (IκB), interleukin-1α, inducible nitric oxide synthase (iNOS), mitogen-activated protein kinase/p38, ERK1/2, c-fos, and c-jun in MSCs from older donors by both bioinformatics and Western blot analysis. Nuclear factor kappa B (NF-κB), myc, and interleukin-4 receptor mRNA levels were significantly elevated in aged cells from both the adipose and bone marrow depots. Immunocytochemistry showed nuclear localization in young donors, but a cytosolic predominance of phosphorylated NF-κB in ASCs from older donors. Western blot demonstrated significantly elevated levels of NF-κB subunits, p65 and p50, and AKT.These findings suggest that differential expression of miRNA is an integral component of biologic aging in MSCs.Age-related changes occur in all biologic systems, from the phenotypic to the molecular level, leading to activation and deactivation of cellular pathways. Recent studies suggest that mesenchymal stem cells (MSCs) are subject to changes that accompany biologic aging [1-3]. MSCs, also known as mesenchymal stromal cells, are a multipotent, heterogeneous population of cells that possess the ability to differentiate along a variety of cell lineages. MSCs have been isolated from numerous tissue sources, includin
|