|
Rice 2012
ABA signal in rice under stress conditionsKeywords: abscisic acid (ABA), ABA transporter, ABA receptor, ABA signaling, ABA metabolism, ABA biosynthesis, abiotic and biotic stresses, rice (Oryza sativa) Abstract: Abscisic acid (ABA) is a plant stress hormone and one of the foremost important signaling molecules in plants, which plays versatile functions in regulating many developmental processes and adaptive stress processes (Santner et al., 2009; Cutler et al., 2010). The signaling pathways of ABA is intensively studied ever since its discovery and great progresses have been made after several decades of studies (Hirayama and Shinozaki, 2007; Wasilewska et al., 2008). ABA is famous for its stress-related properties but it also has been proven to regulate many development and growth processes. Over the past 30 years' research, the network of ABA signaling which is extremely complicated has been gradually elucidated by forward and reverse genetic, biochemical and pharmacological methods, in which ABA acts as a "hub" or even a "free agent" (Finkelstein and Gibson, 2002; Culter et al., 2010; Raghavendra et al., 2010). In recent years, the identification of ABA receptors in plants is an exciting breakthrough in this field and has further completed this complicated network (Ma et al., 2009; Park et al., 2009; Weiner et al., 2010). The molecular mechanism and parts of abiotic-related functions of ABA signaling pathway have been well discussed in some outstanding reviews (Cutler et al., 2010; Raghavendra et al., 2010). Therefore, in this review, we focus on the recent progress made in revealing functions of ABA signaling in an integrated level and highlight how the homeostasis of this chemical is controlled by plants in response to stresses.Like other plant hormones, concentration of ABA in the tissue as well as the sensitivity of the tissue to ABA will determine what response to this phytohormone. The concentration of ABA in a specific tissue is also determined by the process of biosynthesis, catabolism, compartmentation and transport (Taiz and zeiger, 2006). To date, the ABA biosynthesis and catabolism pathway has been completed by using different mutant of these pathways, geneti
|