|
Skeletal Muscle 2011
Transgenic overexpression of γ-cytoplasmic actin protects against eccentric contraction-induced force loss in mdx miceKeywords: stretch-activated channels, calcium, skeletal muscle injury, dystrophin, costamere Abstract: We transgenically overexpressed γ-cyto actin, specifically in skeletal muscle of mdx mice (mdx-TG), and compared skeletal muscle pathology and force-generating capacity between mdx and mdx-TG mice at different ages. We investigated the mechanism by which γ-cyto actin provides protection from force loss by studying the role of calcium channels and stretch-activated channels in isolated skeletal muscles and muscle fibers. Analysis of variance or independent t-tests were used to detect statistical differences between groups.Levels of γ-cyto actin in mdx-TG skeletal muscle were elevated 200-fold compared to mdx skeletal muscle and incorporated into thin filaments. Overexpression of γ-cyto actin had little effect on most parameters of mdx muscle pathology. However, γ-cyto actin provided statistically significant protection against force loss during eccentric contractions. Store-operated calcium entry across the sarcolemma did not differ between mdx fibers compared to wild-type fibers. Additionally, the omission of extracellular calcium or the addition of streptomycin to block stretch-activated channels did not improve the force-generating capacity of isolated extensor digitorum longus muscles from mdx mice during eccentric contractions.The data presented in this study indicate that upregulation of γ-cyto actin in dystrophic skeletal muscle can attenuate force loss during eccentric contractions and that the mechanism is independent of activation of stretch-activated channels and the accumulation of extracellular calcium.Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disease caused by mutations in the dystrophin gene. Dystrophin localizes primarily to costameres, where it links the cortical actin cytoskeleton to the sarcolemma and the extracellular matrix [1]. It is part of the dystrophin-glycoprotein complex (DGC), a large oligomeric complex of proteins thought primarily to stabilize the sarcolemma during muscle contraction. In the absence of a functional dy
|