|
Skeletal Muscle 2011
Regulation of myotube formation by the actin-binding factor drebrinKeywords: myoblast, cell differentiation, drebrin, myotube, actin Abstract: RNA interference (RNAi), chemical inhibition and immunofluorescence approaches were used to assess the role of drebrin in differentiation of primary mouse myoblasts and C2C12 cells.In a search for p38-regulated genes that promote myogenic differentiation, we identified Dbn1, which encodes the actin-binding protein drebrin. Drebrin is an F-actin side-binding protein that remodels actin to facilitate the change of filopodia into dendritic spines during synaptogenesis in developing neurons. Dbn1 mRNA and protein are induced during differentiation of primary mouse and C2C12 myoblasts, and induction is substantially reduced by the p38 MAPK inhibitor SB203580. Primary myoblasts and C2C12 cells depleted of drebrin by RNAi display reduced levels of myogenin and myosin heavy chain and form multinucleated myotubes very inefficiently. Treatment of myoblasts with BTP2, a small-molecule inhibitor of drebrin, produces a phenotype similar to that produced by knockdown of drebrin, and the inhibitory effects of BTP2 are rescued by expression of a mutant form of drebrin that is unable to bind BTP2. Drebrin in myoblasts is enriched in cellular projections and cell cortices and at regions of cell-cell contact, all sites where F-actin, too, was concentrated.Our findings reveal that Dbn1 expression is a target of p38 MAPK signaling during myogenesis and that drebrin promotes myoblast differentiation.Myoblast differentiation is a multistep process that involves withdrawal from the cell cycle, acquisition of a cell type-specific transcriptional program and morphological changes that include elongation, alignment and fusion of myoblasts to form myofibers [1-4]. Whereas transcriptional regulation is at the core of myogenesis, the formation and growth of myofibers is also controlled by a variety of signaling ligands and their receptors, including insulin-like growth factor 1, fibroblast growth factors (FGFs), Wnts, transforming growth factor β superfamily members and others [1-3,5]. Furthermo
|