|
Skeletal Muscle 2012
Inhibition of CD26/DPP-IV enhances donor muscle cell engraftment and stimulates sustained donor cell proliferationKeywords: muscular dystrophy, cell transplantation, xenotransplant, canine, CXCR4, diprotin A Abstract: In this study, we used a canine-to-murine xenotransplantation model to quantitatively compare canine muscle cell engraftment, and test the most effective cell population and modulating factor in a canine model of DMD using allogeneic transplantation experiments.We show that CXCR4 expressing cells are important for donor muscle cell engraftment, yet FACS sorted CXCR4-positive cells display decreased engraftment efficiency. However, diprotin A, a positive modulator of CXCR4-SDF-1 binding, significantly enhanced engraftment and stimulated sustained proliferation of donor cells in vivo. Furthermore, the canine-to-murine xenotransplantation model accurately predicted results in canine-to-canine muscle cell transplantation.Therefore, these results establish the efficacy of diprotin A in stimulating muscle cell engraftment, and highlight the pre-clinical utility of a xenotransplantation model in assessing the relative efficacy of muscle stem cell populations.Duchenne muscular dystrophy (DMD), the most common and severe form of muscular dystrophy, is caused by mutations in the dystrophin gene, the largest gene identified in the human genome. Transplantation of myogenic stem cells possesses great potential for long-term repair of dystrophic muscle. Indeed, intramuscular injection of adult satellite cell-derived myoblasts from a normal syngeneic donor into mdx mice results in the formation of dystrophin-positive muscle fibers [1-3]. However, in small-scale human clinical trials, intramuscular injection of donor myoblasts resulted in transient expression of dystrophin in a small number of recipient muscle fibers and triggered cellular immune responses that destroyed newly-formed donor myotubes [4-8].We used a clinically acceptable regimen of hematopoietic stem cell transplantation to establish mixed donor/host blood cell chimerism and immune tolerance in a canine model of Duchenne muscular dystrophy (cxmd) [9]. Intramuscular injection of donor muscle-derived cells into chimeri
|