全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Study and Comparative Analysis of Conditional Random Fields for Intrusion Detection

Keywords: Intrusion Detection System , Conditional Random Fields , Network Security , Decision tree

Full-Text   Cite this paper   Add to My Lib

Abstract:

Intrusion detection systems are an important component of defensive measures protecting computer systems and networks from abuse. Intrusion detection plays one of the key roles in computer security techniques and is one of the prime areas of research. Due to complex and dynamic nature of computer networks and hacking techniques, detecting malicious activities remains a challenging task for security experts, that is, currently available defense systems suffer from low detection capability and high number of false alarms. An intrusion detection system must reliably detect malicious activities in a network and must perform efficiently to cope with the large amount of network traffic. In this paper we study the Machine Learning and data mining techniques to solve Intrusion Detection problems within computer networks and compare the various approaches with conditional random fields and address these two issues of Accuracy and Efficiency using Conditional Random Fields and Layered Approach.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133